Results on Thermalisation and Harmonics from ALICE

Anthony Timmins for the ALICE Collaboration
Overview

1. **ALICE performance**
 - Detector overview and capabilities
 - Delivered luminosities

2. **Identified particle production and thermalisation**
 - Chemical freeze out and radial flow in Pb-Pb
 - Strangeness dependent freeze out temperatures
 - Radial flow studies in p-Pb collisions

3. **Flow harmonics and initial conditions**
 - v_n fluctuations
 - Chiral Magnetic Effect (CME) searches
 - Event shape engineering
 - Multi-particle correlations and mixed harmonics
The ALICE detector
Suite of detectors available, ALICE optimised for PID
Angular correlation capacities

- Highly uniform TPC ϕ distribution
 - Extended to TPC tracks with ITS hits
- VZERO detectors
 - Large η separation from TPC
 - Minimises non-flow in reaction plane studies
LHC heavy-ion running

<table>
<thead>
<tr>
<th>Year</th>
<th>System</th>
<th>Energy $\sqrt{s_{\text{NN}}}$ (TeV)</th>
<th>Delivered Integrated luminosity</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>Pb-Pb</td>
<td>2.76</td>
<td>10 μb$^{-1}$</td>
</tr>
<tr>
<td>2011</td>
<td>Pb-Pb</td>
<td>2.76</td>
<td>0.1 nb$^{-1}$</td>
</tr>
<tr>
<td>2013</td>
<td>p-Pb</td>
<td>5.02</td>
<td>30 nb$^{-1}$</td>
</tr>
</tbody>
</table>

- **Two Pb-Pb runs**
 - In 2010 - commissioning and first data taking
 - In 2011 – Second run, factor 10 increase in luminosity

- **p-Pb occurred this year**
 - LHC delivered target luminosity

- **Long shutdown now (LS1)**
 - Various upgrades and maintenance in progress
Provide key information on freeze-out dynamics

- Spectral shapes vs. mass => **Radial flow** and **kinetic freeze-out** temperatures
- Yields and ratios => **Chemical freeze-out** temperatures
Identified particle spectra

- Central Pb-Pb π, K, p spectra published last year
 - K^0_S, Λ, Ξ and Ω spectra just submitted for publication
 - arXiv's 1307.6796, 1307.5543 and 1307.5530

- **Shallower slopes** compared to RHIC data...

- Blast-wave model used to obtain radial flow velocity:
 - $\langle \beta_T \rangle = 0.65c$
 - 10% higher than RHIC
 - $T_{\text{kinetic}} = 80$-95 MeV

Graphical representation

- Various particle spectra and fits shown, including $\pi^+ + \pi^-$, $K^+ + K^-$, and $p + \bar{p}$, with fits indicating shallower slopes compared to RHIC data.

- Blast wave model parameters: $\langle \beta_T \rangle = 0.65c$, 10% higher than RHIC, $T_{\text{kinetic}} = 80$-95 MeV.
Chemical freeze-out fits

Chemical freeze-out fits with just π, K, p data:
- $T_{ch} \sim 170$ MeV
- Similar to RHIC data

Deviations observed for proton data...
Inclusion of strangeness yields

- **Difficult to fit all yields** well with common T_{chem}
 - Higher T_{chem} suits multi-strange, lower T_{chem} suits proton and Λ

- **K^*0 not included in fit…**

- **Particle dependent T_{chem}?** Differing particle re-scattering?

Graph:
- Data: ALICE, 0-10%
- Thermal model fit, $\chi^2/N_{\text{df}}=30.9/12$
- $T=156 \text{ MeV}, \nu=5380 \text{ fm}^3$ ($\mu_b = 1 \text{ MeV fixed}$)
- $T=164 \text{ MeV}, \mu_b = 1 \text{ MeV}, \nu=4499 \text{ fm}^3$ (norm. to π^+)

ALICE PRELIMINARY

ALI-PREL-57339
Radial flow studies in p-Pb in collisions

Resembles Pb-Pb: mean p_T increases with centrality and mass

- Blast wave fits $<\beta_T> \sim 0.5c$ central p-Pb
- Similar values observed in pp

More details see talk by P. Christiansen on Thursday…
Flow harmonics and initial conditions

Many tools to investigate fluctuations in initial conditions with flow harmonics:

- Comparison of 2 and 4 particle flow cumulants
- Unfolded v_2 distributions
- Multi-particle correlations and mixed harmonics
Differences in $v_2\{2\}$ and $v_2\{4\}$ arise from v_2 fluctuations

- Strength of flow fluctuations σ_{v_2} can also be determined

- $v_2\{4\} \sim v_2\{6\} \sim v_2\{8\}$ characteristic of Bessel Gaussian form for v_2 fluctuations
v_2 and v_3 fluctuations

- Large fluctuations in v_2^2 and v_3^2 observed event by event
 - Appear largely independent

- 2 particle correlations in circled events dominated by v_2 and v_3
 - Allows v_n distributions to be obtained...

\[
V_{n\Delta} = v_n^2
\]
Unfolded v_2 distributions

Pb-Pb $\sqrt{s_{NN}} = 2.76$ TeV

Method: $v_2^2 = V_2^2, p_T > 0.15$ GeV/c
- Bessel-Gaussian fit

Unfolding removes effects of finite statistics

- Expected to reflect eccentricity fluctuations of initial state (arxiv:1212.1008)
- Bessel Gaussian fits work nearly always.
Multi-particle correlations of v_1 and v_3

- Multi-particle correlations $v_n\{4\}$, $v_n\{6\}$, and $v_n\{8\}$ less sensitive to non-flow
- Strong signals observed for $n=1,2$ and 3
 - Suggests driven by collective effects
- $v_1\{4\} \sim v_1\{6\} \sim v_3\{4\} \sim v_3\{6\}$...

Submitted v_1 vs. reaction plane for publication
(arXiv:1306.4145)
Event shape engineering

- If we can “see” events with low/high flow, we can select them.
 - Need to be clever and avoid biases.

- Measure flow in one part of phase space (a)
 - Analyze data in another part (b)

- Appears to work in data
 - Select events with low/high q_n^2 in VZERO
 - Observe low/high v_2 measurements in TPC…

\[q_n^2 = 1 + (M - 1)v_n^2 \]
Event shape engineering

- Spectra shape appears to change with q_2
 - $<p_T>$ increases with v_2
 - No obvious mass dependence

- Due to correlation between $<\epsilon_2>$ and $<R^2>$?
 - High $<\epsilon_2>$, small $<R^2>$, greater radial pressure gradient?

- Other observables we can study w.r.t q_2?
Searches for Chiral Magnetic Effect (CME)

\[\langle \cos(\varphi_1 + \varphi_2 - 2\psi) \rangle \]

CME searches with
\[<\cos(\varphi_1 + \varphi_2 - 2\psi)> \]
- Below 0 for same charges
- ~ 0 for opposite charges

Results at LHC similar to those at RHIC…

See talk from S. Voloshin for extensive experimental overview…

Non-zero correlations observed between ψ_1, ψ_2 and ψ_3 plane directions.
Mixed harmonics

Teaney and Yan correlator investigates p_T dependence of such correlations

- Hydro with Glauber initial conditions qualitatively describes data at low p_T
- Data negative at high p_T (in contrast to model)
Summary

1. Comprehensive set off spectra and flow measurements from ALICE
 - Strong constraints on initial conditions and global event characteristics

2. Identified particle production,
 - Radial flow 0.65c, 10% higher than RHIC,
 - Chemical freeze-out temperatures appear to have particle species dependence,
 - "Radial flow features" observed in p-Pb spectra

3. Angular correlations and flow
 - v_2 fluctuations appear to follow Bessel Gaussian form
 - Correlation observed between v_2 and spectra shapes
 - Non zero correlations observed between ψ_1, ψ_2 and ψ_3 planes