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..or equilibration in three acts:
@ 1. Melting of the coherent fields
@ 2. Competition between dynamics and expansion

@ 3. Bottom-up thermalization



What?
Hydrodynamics provides a fantastic description of HIC, but:

@ assumes local thermal equilibrium
o needs thermalization time 75 and initial geometry T,,,(70) as input

@ What happens before?
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How?

@ Extremely big and at extremely high energy
@ Saturation scale Qs > Agcp
weak coupling: as(Qs) < 1
Scale separation allows for effective theories: HTL, kinetic theory.
Strong fields, not perturbative.
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@ Provide description consistent with CGC assumptions

@ Philosophy: Do the whole calculation at weak coupling, extrapolate
to f|n|te Qg Only at the end (Compare to McLerran's talk)
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@ Provide description consistent with CGC assumptions

@ Philosophy: Do the whole calculation at weak coupling, extrapolate
to f|n|te Qg Only at the end (Compare to McLerran's talk)

Units o Q;1, not fm/c in this talk
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Initial condition: t ~ Q!

Blaizot Mueller '87, McLerran Venugopalan '94, Kovner McLerran, Weigert '95, Gelis Epelbaum '13

At weak coupling, well understood: Color Glass Condensate

@ Strong, boost invariant fields

@ Characteristic transverse coherence length
-1
~ Qs

@ Characteristic energy density € ~ Q*/«

@ Boost invariance broken only by quantum fluctuations
o Fields decohere and isotropize in a time scale 7 ~ Q7! x log(a)™?
@ For details: Thomas Epelbaum’s talk



The Map Kurkela, Moore '11

Once the fields have decohered, description in terms of gluons (=0, + = :

@ Characteristic, saturation scale: Qs

@ Highly over-occupied: flp<Qs)~ac c2=1
: : . ~Q
@ Highly anisotropic: Pr o
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Big question: How to reach the thermal point c =0,d =0



® 1. Melting of the coherent fields
@ 2. Competition between dynamics and expansion

@ 3. Bottom-up thermalization
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Competition between dynamics and expansion: c¢(t), d(t)

Subsequent evolution competition between
@ Longitudinal expansion (anisotropizes)

@ Momentum broadening due interactions (isotropizes,dilutes)

anisotropy: d
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Longitudinal expansion
Spatial expansion translates into redshift in p, ~ a9 Qs

o Reduces pr = a?Q, Q. stays constant
@ Reduces energy: £(t) ~ a7 1Q2/(Qst)
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Longitudinal expansion

Spatial expansion translates into redshift in p, ~ a9 Qs
@ Reduces p, =0a%Q, Qs stays constant
@ Reduces energy: £(t) ~ a 1Q%/(Qst)
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Longitudinal expansion

Spatial expansion translates into redshift in p, ~ a9 Qs

@ Reduces p, =0a%Q, Qs stays constant

@ Reduces energy: £(t) ~ a 1Q%/(Qst)
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Scattel’l ng EIaStIC Baier, Mueller, Schiff, Son '00

Elastic scattering dilutes the distribution (6 = o)
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@ Along the attractive solution scattering and expansion compete
@ Eventually system becomes underoccupied
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Scattel’l ng EIaStIC Baier, Mueller, Schiff, Son '00
Elastic scattering dilutes the distribution (5 = o)
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@ Along the attractive solution scattering and expansion compete

@ Eventually system becomes underoccupied

@ Suggested other solution BGLMV, that might stay O(1) isotropic.

Blaizot, Gelis, Liao, McLerran, Venugopalan 2011



Plasma instabilities: Anisotropic screening Mrowezynski ‘93, 00

Isotropic distributions: Anisotropic distributions:

@ Screening stabilizes soft E-fields ® B-field induces non-trivial

rotation:
) ) 5 f(p) o Some B-fields stabilized
Wpy ~ m” ~ a/d p—— @ ...others destabilized:
p Plasma-unstable modes
Q Screened R Unstable
fields B-fields
B

@ B-fields induces a rotation on
f(p) — No screening for static
B-fields

@ Unstable modes grow
exponentially. ..



Plasma instabilites: Unstable modes

@ Which B-modes become unstable depend on the distribution of
g|u0ns Romatshcke, Strickland '03, Arnold, Moore '07
Strong anisotropy: Weak anisotropy:

f(B) ~ o~ “O(Qs—p)O(6Qs—pz)
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Plasma instabilities: Growth and saturation
@ Saturation when fields become non-perturbatively strong:

L. . A~ inst/g
Dy = kinst + ighu = { f(kinst) ~ 1/

2 4

energy density / g m,

Arnold, Moore, Yaffe '07, Bodeker, Rummukainen '07

Hard Loop: Qs modes as currents, unstable modes classical YM



Plasma instabilites: Momentum diffusion g

Hard parton traveling through magnetic fields receives coherent kicks from
patches of same-sign magnetic fields

° Apkick ~ g B leon
® Gt~ Nijok(Apkick)?
———
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Kurkela, Moore
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Attractor with plasma instabilities

Broadening of the hard particle distribution dominated by the plasma
instabilities (§e) < Ginst) originating from the scale Qs

R Anisotropy: d
A 1
Q
. (Free Strg_amlng)
. _B_le§ el IS ? B
%m ’tgﬁ I
—— z I
mb j |
| 0 BGLMV 1 Occupancy: ¢
] ) -1
3Q f~a

BMSS: Baier, Mueller, Schiff, Son 2009, KM: Kurkela, Moore 2011 , BGLMV: Blaizot, Gelis, Liao, McLerran, Venugopalan 2011



Numerical approaches

Anisotropy: d
1— .

HEL: Attems, Rebhan, Strickland '13

BBSV: Berges, Boguslavski, Schlichting, Venugopalan '13

Momentum space anisotropy: A /At
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@ Hard Expanding Loops: Assumes free streaming for the particles, sees

the growth of plasma instabilities.

@ BBSV: Classical YM simulations in expanding background at
(c =1,d = 0)-point. Favours BMSS. Not yet evidence of plasma

instabilities.

Higher anisotropy

no=1/4 ny=1



® 1. Melting of the coherent fields
@ 2. Competition between dynamics and expansion

@ 3. Bottom-up thermalization
@ ...or how very dilute and anisotropic systems equilibrate
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SOft radiation Baier, Mueller, Schiff & Son '00

Physics of under occupied qualitatively different from over occupied.
Formation of soft thermal bath:

? Q @ Soft modes quick to emit

Ns ~ QNco)

@ Low p: easy to bend
=-thermalize quickly

@ (Can dominate dynamics!

%TQ{ (i.e. scattering, screening, ...)

= Right way to think: Few energetic “jets” propagating in thermal bath



Hard Splitti ng Baier, Mueller, Schiff & Son '00
Qs modes break before they bend!

Q o2 o4 o

L@ o, @2 it QM)

@ In vacuum: on-shell particles, no splitting
@ In medium: Particles receive small kicks frequently
@ For stochastic uncorrelated kicks: Brownian motion in p-space
Apt ~at,  tpue(k) ~ op(k) ~ a7t Vk/G (LPM)
——

trorm

@ Physics of Landau-Pomeranchuk-Migdal suppression important



BOttom— U p Baier, Mueller, Schiff, Son '00

Thermal bath eats the hard particles away:

@ Scales below k¢ have
cascaded down to T-bath

24,2
tsplit(ksplit) ~t= ksplit ~a°qt

o "Falling” particles heat up the
thermal bath

T4 ~ ksplit / d3pf(p)

@ Thermalization when Qs gets
E—

eaten
0Q

ksplit ~ Qs

Thermalization time determined by how strongly hard particle motion is
affected by the thermal bath, §



BOttom U p Baier, Mueller, Schiff, Son 2000

If the g is dominated by elastic scattering
with the soft thermal bath

a ~ O£2 T3
T ~ o Qs(Qs t)
ksplit ~ a13(Qs t)S Q
0 ~ o 13/5 Qs_l




BOttom U p Baier, Mueller, Schiff, Son 2000

If the g is dominated by elastic scattering
with the soft thermal bath

a ~ CM2 T3 Q
T ~ Ol3 Qs(Qs t)

ksplit ~ a13(Qs t)5 Q
0 ~ o 13/5 Qs_l

However, the thermal bath is slightly
anisotropic and can give rise to plasma
instabilities and increase ¢ to faster

thermalization Kurkela, Moore '11 8 /
}7

g ~ a?Q3

T ~ aQs(Qs t)1/4
ksplit ~ a5 ( Qt)2 Qs
0 ~ o 5/2 Q;l

N
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Conclusions:

@ Thermalization occurs even for o < 1
@ Thermalization happens " bottom up”.

@ Thermalization time estimated by how long it takes for Qs-'jets’ the
quench in a thermal background generated by themselves.

@ Anisotropic screening leads (always) to plasma instabilities
@ Role of plasma instabilities under investigation
@ Thermalization time 7 ~ #(f5/2 Q;l.

@ Is this long or short? Depends on #. Numerics needed.



Instability driven bottom-up thermalization

Momentum: In(p/Q)/In(a )
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Momentum scales vs. time scales



Comparison to other work

f() 4 R Anisotropy: d
| f=a’
"R
G ————— .
1 o By 5 O_CfuPanCy' ¢
—— d f~a
aQ
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