Thermalization at weak coupling

Aleksi Kurkela CERN (PH-TH)

... or equilibration in three acts:

- 1. Melting of the coherent fields
- 2. Competition between dynamics and expansion
- 3. Bottom-up thermalization

What?

Hydrodynamics provides a fantastic description of HIC, but:

- assumes local thermal equilibrium
 - needs thermalization time au_0 and initial geometry $T_{\mu
 u}(au_0)$ as input
- What happens before?

What?

Hydrodynamics provides a fantastic description of HIC, but:

- assumes local thermal equilibrium
 - needs thermalization time au_0 and initial geometry $extsf{T}_{\mu
 u}(au_0)$ as input
- What happens before?

How?

- Extremely big and at extremely high energy
 - Saturation scale $Q_s \gg \Lambda_{QCD}$
 - weak coupling: $\alpha_s(Q_s) \ll 1$
 - Scale separation allows for effective theories: HTL, kinetic theory.
 - Strong fields, not perturbative.
- Provide description consistent with CGC assumptions
- Philosophy: Do the whole calculation at weak coupling, extrapolate to finite α_s only at the end (Compare to McLerran's talk)

What?

Hydrodynamics provides a fantastic description of HIC, but:

- assumes local thermal equilibrium
 - needs thermalization time au_0 and initial geometry $T_{\mu
 u}(au_0)$ as input
- What happens before?

How?

- Extremely big and at extremely high energy
 - Saturation scale $Q_s \gg \Lambda_{QCD}$
 - weak coupling: $\alpha_s(Q_s) \ll 1$
 - Scale separation allows for effective theories: HTL, kinetic theory.
 - Strong fields, not perturbative.
- Provide description consistent with CGC assumptions
- Philosophy: Do the whole calculation at weak coupling, extrapolate to finite α_s only at the end (Compare to McLerran's talk)

Units $\alpha^{\#}Q_s^{-1}$, not fm/c in this talk

\bullet 1. Melting of the coherent fields

- 2. Competition between dynamics and expansion
- 3. Bottom-up thermalization

Initial condition: $t \sim Q_s^{-1}$

Blaizot Mueller '87, McLerran Venugopalan '94, Kovner McLerran, Weigert '95, Gelis Epelbaum '13

At weak coupling, well understood: Color Glass Condensate

- Strong, boost invariant fields
- Characteristic transverse coherence length $\sim Q_s^{-1}$
- Characteristic energy density $\epsilon \sim Q^4/lpha$

- Boost invariance broken only by quantum fluctuations
- Fields decohere and isotropize in a time scale $au \sim Q_s^{-1} imes \log(lpha)^{-1}$
 - For details: Thomas Epelbaum's talk

The Map:

Kurkela, Moore '11

Once the fields have decohered, description in terms of gluons $(\eta = 0, \tau = t)$:

 Q_{s}

- Characteristic, *saturation* scale:
- Highly over-occupied:
- Highly anisotropic:

$$\begin{split} f(p < Q_s) &\sim \alpha^{-c}, \quad c \gtrsim 1 \\ \left\{ \begin{array}{ll} p_t \sim Q_s \\ p_z \sim \alpha^d Q_s \end{array} \right. \end{split}$$

Big question: How to reach the thermal point c = 0, d = 0

- 1. Melting of the coherent fields
- 2. Competition between dynamics and expansion
- 3. Bottom-up thermalization

Competition between dynamics and expansion: c(t), d(t)

Subsequent evolution competition between

- Longitudinal expansion (anisotropizes)
- Momentum broadening due interactions (isotropizes, dilutes)

Longitudinal expansion

Spatial expansion translates into redshift in $p_z \sim lpha^d Q_s$

- Reduces $p_z = \alpha^d Q$, Q_s stays constant
- Reduces energy: $\varepsilon(t) \sim \alpha^{-1} Q_s^4/(Q_s t)$

Longitudinal expansion

Spatial expansion translates into redshift in $p_z \sim lpha^d Q_s$

- Reduces $p_z = \alpha^d Q$, Q_s stays constant
- Reduces energy: $\varepsilon(t) \sim \alpha^{-1} Q_s^4 / (Q_s t)$

Longitudinal expansion

Spatial expansion translates into redshift in $p_z \sim lpha^d Q_s$

- Reduces $p_z = \alpha^d Q$, Q_s stays constant
- Reduces energy: $\varepsilon(t) \sim \alpha^{-1} Q_s^4 / (Q_s t)$

Scattering: Elastic

- Along the attractive solution scattering and expansion compete
- Eventually system becomes underoccupied

Scattering: Elastic

- Along the attractive solution scattering and expansion compete
- Eventually system becomes underoccupied

Scattering: Elastic

Baier, Mueller, Schiff, Son '00

 $(\delta \equiv \alpha^d)$

- Along the attractive solution scattering and expansion compete
- Eventually system becomes underoccupied
- Suggested other solution BGLMV, that might stay $\mathcal{O}(1)$ isotropic.

Blaizot, Gelis, Liao, McLerran, Venugopalan 2011

Plasma instabilities: Anisotropic screening

Isotropic distributions:

• Screening stabilizes soft E-fields

$$\omega_{pl}^2 \sim m^2 \sim \alpha \int d^3 p \frac{f(p)}{p}$$

• B-fields induces a rotation on $f(p) \rightarrow$ No screening for static B-fields

Anisotropic distributions:

- B-field induces non-trivial rotation:
 - Some B-fields stabilized
 - ...others destabilized: Plasma-unstable modes

• Unstable modes grow exponentially...

Plasma instabilites: Unstable modes

Which *B*-modes become unstable depend on the distribution of gluons Romatshcke, Strickland '03, Arnold, Moore '07
 Strong anisotropy: Weak anisotropy:

Plasma instabilities: Growth and saturation

Saturation when fields become non-perturbatively strong:

$$D_{\mu} = k_{\mathrm{inst}} + igA_{\mu} \Rightarrow \left\{ egin{array}{l} A \sim k_{\mathrm{inst}}/g \ f(k_{\mathrm{inst}}) \sim 1/lpha \end{array}
ight.$$

Arnold, Moore, Yaffe '07, Bödeker, Rummukainen '07

Hard Loop: Q_s modes as currents, unstable modes classical YM

Plasma instabilites: Momentum diffusion \hat{q}

Hard parton traveling through magnetic fields receives coherent kicks from patches of same-sign magnetic fields

Attractor with plasma instabilities

Broadening of the hard particle distribution dominated by the plasma instabilities $(\hat{q}_{el} \ll \hat{q}_{inst})$ originating from the scale Q_s

BMSS: Baier, Mueller, Schiff, Son 2009, KM: Kurkela, Moore 2011, BGLMV: Blaizot, Gelis, Liao, McLerran, Venugopalan 2011

Numerical approaches

- Hard Expanding Loops: Assumes free streaming for the particles, sees the growth of plasma instabilities.
- BBSV: Classical YM simulations in expanding background at (c = 1, d = 0)-point. Favours BMSS. Not yet evidence of plasma instabilities.

- 1. Melting of the coherent fields
- 2. Competition between dynamics and expansion
- 3. Bottom-up thermalization
 - ...or how very dilute and anisotropic systems equilibrate

Soft radiation

Physics of under occupied qualitatively different from over occupied. Formation of soft thermal bath:

• Soft modes quick to emit

 $n_s \sim \alpha n_{col}$

- Low p: easy to bend ⇒thermalize quickly
- Can dominate dynamics!
 - (i.e. scattering, screening, ...)

 \Rightarrow Right way to think: Few energetic "jets" propagating in thermal bath

Hard splitting

Baier, Mueller, Schiff & Son '00

 Q_s modes break before they bend!

- In vacuum: on-shell particles, no splitting
- In medium: Particles receive small kicks frequently
 - For stochastic uncorrelated kicks: Brownian motion in *p*-space

$$\Delta p_{\perp}^2 \sim \hat{\boldsymbol{q}} t, \qquad t_{\mathrm{split}}(k) \sim l_{\mathrm{stop}}(k) \sim \alpha^{-1} \underbrace{\sqrt{k/\hat{\boldsymbol{q}}}}_{t_{\mathrm{form}}} \qquad (\mathrm{LPM})$$

Physics of Landau-Pomeranchuk-Migdal suppression important

Bottom-Up

Thermal bath eats the hard particles away:

• Scales below k_{split} have cascaded down to T-bath

 $t_{
m split}(k_{
m split}) \sim t \Rightarrow k_{
m split} \sim lpha^2 \hat{q} t^2$

• "Falling" particles heat up the thermal bath

$$T^4 \sim k_{
m split} \int d^3 p f(p)$$

• Thermalization when Q_s gets eaten

$$k_{
m split} \sim Q_s$$

Thermalization time determined by how strongly hard particle motion is affected by the thermal bath, \hat{q}

Bottom up:

If the \hat{q} is dominated by elastic scattering with the soft thermal bath

$$\begin{cases} \hat{q} \sim \alpha^2 T^3 \\ T \sim \alpha^3 Q_s(Q_s t) \\ k_{\text{split}} \sim \alpha^{13} (Q_s t)^5 Q \\ \tau_0 \sim \alpha^{-13/5} Q_s^{-1} \end{cases}$$

Bottom up:

If the \hat{q} is dominated by elastic scattering with the soft thermal bath

$$\begin{cases} \hat{q} \sim \alpha^2 T^3 \\ T \sim \alpha^3 Q_s(Q_s t) \\ k_{\text{split}} \sim \alpha^{13}(Q_s t)^5 Q \\ \tau_0 \sim \alpha^{-13/5} Q_s^{-1} \end{cases}$$

However, the thermal bath is slightly anisotropic and can give rise to plasma instabilities and increase \hat{q} to faster thermalization Kurkela, Moore '11

$$\begin{cases} \hat{q} \sim \alpha^3 Q_s^3 \\ T \sim \alpha Q_s (Q_s t)^{1/4} \\ k_{\rm split} \sim \alpha^5 (Q t)^2 Q_s \\ \tau_0 \sim \alpha^{-5/2} Q_s^{-1} \end{cases}$$

• Thermalization occurs even for $\alpha \ll 1$

- Thermalization occurs even for $\alpha \ll 1$
- Thermalization happens "bottom up".
 - Thermalization time estimated by how long it takes for Q_{s} -'jets' the quench in a thermal background generated by themselves.

- Thermalization occurs even for $\alpha \ll 1$
- Thermalization happens "bottom up".
 - Thermalization time estimated by how long it takes for Q_s -'jets' the quench in a thermal background generated by themselves.
- Anisotropic screening leads (always) to plasma instabilities

- $\bullet\,$ Thermalization occurs even for $\alpha\ll 1$
- Thermalization happens "bottom up".
 - Thermalization time estimated by how long it takes for Q_s -'jets' the quench in a thermal background generated by themselves.
- Anisotropic screening leads (always) to plasma instabilities
- Role of plasma instabilities under investigation

- $\bullet\,$ Thermalization occurs even for $\alpha\ll 1$
- Thermalization happens "bottom up".
 - Thermalization time estimated by how long it takes for Q_{s} -'jets' the quench in a thermal background generated by themselves.
- Anisotropic screening leads (always) to plasma instabilities
- Role of plasma instabilities under investigation
- Thermalization time $\tau \sim \# \alpha^{-5/2} Q_s^{-1}$.
 - Is this long or short? Depends on #. Numerics needed.

Momentum scales vs. time scales

Comparison to other work

BGLMV: Blaizot, Gelis, Liao, McLerran, Venugopalan arXiv:1107.5296 BMSS: Baier, Mueller, Schiff, Son hep-ph/0009237 HEL: Rebhan, Stricland arXiv:1207.5795 CGC: Gelis, Iancu, Jalilian-Marian, Venugopalan arXiv:1002.0333

BS: Berges, Schlichting: arXiv:1209.0817