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. . . or equilibration in three acts:

1. Melting of the coherent fields

2. Competition between dynamics and expansion

3. Bottom-up thermalization
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Hydrodynamics provides a fantastic description of HIC, but:

assumes local thermal equilibrium

needs thermalization time τ0 and initial geometry Tµν(τ0) as input
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weak coupling: αs(Qs) ≪ 1
Scale separation allows for effective theories: HTL, kinetic theory.
Strong fields, not perturbative.

Provide description consistent with CGC assumptions

Philosophy: Do the whole calculation at weak coupling, extrapolate
to finite αs only at the end (Compare to McLerran’s talk)



What?
Hydrodynamics provides a fantastic description of HIC, but:

assumes local thermal equilibrium

needs thermalization time τ0 and initial geometry Tµν(τ0) as input

What happens before?

How?

Extremely big and at extremely high energy

Saturation scale Qs ≫ ΛQCD

weak coupling: αs(Qs) ≪ 1
Scale separation allows for effective theories: HTL, kinetic theory.
Strong fields, not perturbative.

Provide description consistent with CGC assumptions

Philosophy: Do the whole calculation at weak coupling, extrapolate
to finite αs only at the end (Compare to McLerran’s talk)

Units α#Q−1
s , not fm/c in this talk
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3. Bottom-up thermalization



Initial condition: t ∼ Q−1
s

Blaizot Mueller ’87, McLerran Venugopalan ’94, Kovner McLerran, Weigert ’95, Gelis Epelbaum ’13

At weak coupling, well understood: Color Glass Condensate

Strong, boost invariant fields

Characteristic transverse coherence length
∼ Q−1

s

Characteristic energy density ǫ ∼ Q4/α

Boost invariance broken only by quantum fluctuations

Fields decohere and isotropize in a time scale τ ∼ Q−1
s × log(α)−1

For details: Thomas Epelbaum’s talk



The Map: Kurkela, Moore ’11

Once the fields have decohered, description in terms of gluons (η = 0, τ = t):

Characteristic, saturation scale: Qs

Highly over-occupied: f (p < Qs) ∼ α−c , c & 1

Highly anisotropic:
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Competition between dynamics and expansion: c(t), d(t)

Subsequent evolution competition between

Longitudinal expansion (anisotropizes)

Momentum broadening due interactions (isotropizes,dilutes)
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Longitudinal expansion
Spatial expansion translates into redshift in pz ∼ αdQs

Reduces pz = αdQ, Qs stays constant

Reduces energy: ε(t) ∼ α−1Q4
s /(Qs t)
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Longitudinal expansion

Spatial expansion translates into redshift in pz ∼ αdQs
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Scattering: Elastic Baier, Mueller, Schiff, Son ’00

Elastic scattering dilutes the distribution (δ ≡ αd)
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Scattering: Elastic Baier, Mueller, Schiff, Son ’00

Elastic scattering dilutes the distribution (δ ≡ αd)
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Along the attractive solution scattering and expansion compete

Eventually system becomes underoccupied

Suggested other solution BGLMV, that might stay O(1) isotropic.
Blaizot, Gelis, Liao, McLerran, Venugopalan 2011



Plasma instabilities: Anisotropic screening Mrowczynski ’93, ’00

Isotropic distributions:

Screening stabilizes soft E-fields

ω2
pl ∼ m2 ∼ α
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Plasma instabilites: Unstable modes

Which B-modes become unstable depend on the distribution of
gluons Romatshcke, Strickland ’03, Arnold, Moore ’07

Strong anisotropy:

f (~p) ∼ α−cΘ(Qs−p)Θ(δQs−pz)
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Plasma instabilities: Growth and saturation

Saturation when fields become non-perturbatively strong:

Dµ = kinst + igAµ ⇒

{
A ∼ kinst/g
f (kinst) ∼ 1/α
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Hard Loop: Qs modes as currents, unstable modes classical YM



Plasma instabilites: Momentum diffusion q̂

Hard parton traveling through magnetic fields receives coherent kicks from
patches of same-sign magnetic fields
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Attractor with plasma instabilities

Broadening of the hard particle distribution dominated by the plasma
instabilities (q̂el ≪ q̂inst) originating from the scale Qs
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Numerical approaches
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1. Melting of the coherent fields

2. Competition between dynamics and expansion

3. Bottom-up thermalization

...or how very dilute and anisotropic systems equilibrate
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Soft radiation Baier, Mueller, Schiff & Son ’00

Physics of under occupied qualitatively different from over occupied.
Formation of soft thermal bath:
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Low p: easy to bend
⇒thermalize quickly

Can dominate dynamics!

(i.e. scattering, screening, . . . )

⇒ Right way to think: Few energetic “jets” propagating in thermal bath



Hard splitting Baier, Mueller, Schiff & Son ’00

Qs modes break before they bend!
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In vacuum: on-shell particles, no splitting

In medium: Particles receive small kicks frequently

For stochastic uncorrelated kicks: Brownian motion in p-space
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Physics of Landau-Pomeranchuk-Migdal suppression important



Bottom-Up Baier, Mueller, Schiff, Son ’00

Thermal bath eats the hard particles away:
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Thermalization time determined by how strongly hard particle motion is
affected by the thermal bath, q̂



Bottom up: Baier, Mueller, Schiff, Son 2000

If the q̂ is dominated by elastic scattering
with the soft thermal bath
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Bottom up: Baier, Mueller, Schiff, Son 2000

If the q̂ is dominated by elastic scattering
with the soft thermal bath







q̂ ∼ α2T 3

T ∼ α3Qs(Qs t)
ksplit ∼ α13(Qs t)

5Q

τ0 ∼ α−13/5Q−1
s

However, the thermal bath is slightly
anisotropic and can give rise to plasma
instabilities and increase q̂ to faster
thermalization Kurkela, Moore ’11
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Conclusions:

Thermalization occurs even for α ≪ 1

Thermalization happens ”bottom up”.

Thermalization time estimated by how long it takes for Qs -‘jets’ the
quench in a thermal background generated by themselves.

Anisotropic screening leads (always) to plasma instabilities

Role of plasma instabilities under investigation

Thermalization time τ ∼ #α−5/2Q−1
s .

Is this long or short? Depends on #. Numerics needed.



Instability driven bottom-up thermalization
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Comparison to other work
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BGLMV: Blaizot, Gelis, Liao, McLerran, Venugopalan arXiv:1107.5296
BMSS: Baier, Mueller, Schiff, Son hep-ph/0009237
HEL: Rebhan, Stricland arXiv:1207.5795
CGC: Gelis, Iancu, Jalilian-Marian, Venugopalan arXiv:1002.0333

BS: Berges, Schlichting: arXiv:1209.0817


