Recent heavy flavor measurements by PHENIX experiment

Sanghoon Lim Yonsei University for the PHENIX collaboration

IS 2013 Illa de A Toxa, Galicia, Spain

Outline

- Brief introduction
 - studying open heavy flavor
 - PHENIX detector
- Heavy flavor measurements by PHENIX
 - remind of HI results
 - d+Au results
- Highlighting the PHENIX results finalized soon
- Summary

Studying open heavy flavor

- p+p collisions
 - test pQCD calculations
 - baseline for heavy ion collisions
- Heavy ion collisions
 - probe effects of the strongly interacting hot medium
- d(p)+A collisions
 - quantify cold nuclear matter effects

Studying open heavy flavor

- p+p collisions
 - test pQCD calculations
 - baseline for heavy ion collisions
- Heavy ion collisions
 - probe effects of the strongly interacting hot medium
- d(p)+A collisions
 - quantify cold nuclear matter effects
- PHENIX has suitable design for lepton measurements

4

- single leptons from open heavy flavor
- lepton pairs from quarkonia

Semi-leptonic decay

- lepton triggered measurement(e, μ) (statistical background subtraction)

e measurement @ PHENIX central arm

- Cocktail method
 - simulate photonic background with measured spectra of hadrons
 - large systematics
 - π0 Dalitz
 - conversion γ
 - direct γ & Ke3
 - J/Ψ, Υ, DY

- kinematic range - $|\eta| < 0.35$ - $\Delta \phi = \pi$
- Detectors
 - DC & PC for tracking
 - RICH for electron ID
 - EMcal for energy of electron
 - Converter method
 - using photon converter (1.68% X₀)
 - increase photonic background and

statistically limited

$$N_e^{conv-out} = N_e^{\gamma} + N_e^{non-\gamma}$$

$$N_e^{conv-in} = R_{\gamma}N_e^{\gamma} + (1-\epsilon)N_e^{non-\gamma}$$

5

µ measurement @ PHENIX muon arm

- kinematic range
 - $1.2 < |\eta| < 2.2$ at forward
 - Δφ = 2π
 - ~10 λ absorber to reject hadrons
 - Muon Tracker for momentum
 - Muon identifier for hadron/muon separation

- Main background sources are decay muons from light hadrons and punch-through hadrons.
- Full MC simulation of hadron cocktail(π, K, p)

 Tune to data by using z-vertex dependence of decay muons at MuID Gap 4 and yields of stopped hadrons at MuID Gap 2 and 3

Heavy flavor in p+p collisions forward rapidity

 Extend kinematic range and reduce uncertainties with enhanced statistics and improved analysis techniques

Quantifying medium effects

- Nuclear modification factor
 - $R_{AA} = I$: No overall modification
 - $R_{AA} < I$: Suppression
 - $R_{AA} > I$: Enhancement

 $R_{AA} = \frac{dN_{AA}}{\langle N_{coll} \rangle \times dN_{pp}}$

Quantifying medium effects

- Nuclear modification factor
 - $R_{AA} = I$: No overall modification
 - $R_{AA} < I$: Suppression
 - $R_{AA} > I$: Enhancement

$$R_{AA} = \frac{dN_{AA}}{\langle N_{coll} \rangle \times dN_{pp}}$$

- Theoretical model (Sharma, Vitev and Zhang)
 - radiative energy loss not enough to describe large suppression
 - includes partonic energy loss and collisional dissociation
 - CNM effects such as shadowing,

Cronin effect and initial energy loss

Heavy flavor in HI collisions

Large suppression in central Au+Au collisions at mid-rapidity

Heavy flavor in HI collisions

- Large suppression in central Au+Au collisions at mid-rapidity
- The most central (0-20%) Cu+Cu collisions
 - not much suppression at mid, but large suppression at forward
 - well describe suppression at forward rapidity with additional CNM effects (shadowing, initial energy loss)

Heavy flavor in HI collisions

Large suppression in central Au+Au collisions at mid-rapidity

- The most central (0-20%) Cu+Cu collisions
 - not much suppression at mid, but large suppression at forward
 - well describe suppression at forward rapidity with additional CNM effects (shadowing, initial energy loss)

Cold Nuclear Matter in d+Au collisions

- d+Au collision as a control experiment
 - In heavy ion collision, CNM & HNM effects are mixed
 - baseline measurements with minimal hot nuclear medium

Cold Nuclear Matter in d+Au collisions

- d+Au collision as a control experiment
 - In heavy ion collision, CNM & HNM effects are mixed
 - baseline measurements with minimal hot nuclear medium

parton of x₂ in Au

14

 $x_2 = \frac{Q}{\sqrt{s_{NN}}} e^{-y}$

Phys. Rev. Lett. 109, 242301 (2012)

PHENIX

HF electrons @ mid-rapidity

- $R_{dA} \sim I$ in the peripheral collisions
- Large enhancement in the central collision

Phys. Rev. Lett. 109, 242301 (2012)

HF electrons @ mid-rapidity

- $R_{dA} \sim I$ in the peripheral collisions
- Large enhancement in the central collision
 - HF R_{dA} is larger than $\pi^0~R_{dA}$
 - HF suppression in Au+Au is due to the HNM effects

Phys. Rev. Lett. 109, 242301 (2012)

17

HF electrons @ mid-rapidity

- $R_{dA} \sim I$ in the peripheral collisions
- Large enhancement in the central collision

HF muons @ forward & backward rapidity

HF single muons p_T spectra at backward(Au-direction, left) and at forward(d-direction, right) in d+Au collisions
 lines are <T_{AB}> scaled fit function of spectra in p+p collisions

HF muons R_{dA}, peripheral (60-88%)

No modification at both rapidity ranges in most peripheral collisions

HF muons R_{dA}, peripheral (60-88%) vs. central (0-20%)

No modification at both rapidity ranges in most peripheral collisions

20

 Enhancement at backward rapidity and suppression at forward rapidity in most central collisions

- Strong CNM effects in the most central d+Au collisions!

Comparison to models

- good agreement with the prediction from I.Vitev
 - muon production from D and B meson at <y>=1.7
 - considering shadowing, Cronin effect and initial parton energy loss

Comparison to models

- good agreement with the prediction from I.Vitev
 - muon production from D and B meson at <y>=1.7
 - considering shadowing, Cronin effect and initial parton energy loss
- EPS09s nPDF evaluation with PYTHIA
 consistent with data at forward rapidity as well

Rapidity evolution of R_{dA} vs. N_{coll}

- Stronger centrality dependence at low p⊤ region
 - similar trends at backward and mid-rapidity
 - opposite trend at forward, more suppression as larger N_{coll}

23

Comparison to J/ψ

- Different behavior at mid- and backward rapidity depending on centrality
 - significant role of break-up in quarkonia production?

Finalized soon I: HF μ in d+Au (200 GeV) at forward

- HF μ production in central d+Au collisions at forward (backward) rapidity is suppressed (enhanced).
 - backward results are consistent with the results mid-rapidity
- Comparison to J/ψ results
 - highlight the role of nuclear break-up cross section in quarkonia production

Finalized soon II: HF e- μ correlation in d+Au at 200 GeV

Correlation between HF e (mid) and HF µ (forward)
 In d+Au results at forward rapidity, suppression/de-correlation is shown relative to p+p results.

Finalized soon III: HF e in Cu+Cu (200 GeV) at mid

- Cu+Cu results are consistent with Au+Au and d+Au results in similar $<\!N_{coll}\!>$ regioin

Finalized soon III: HF e in Cu+Cu (200 GeV) at mid

- Cu+Cu R_{AA} is located between R_{dA} and Au+Au R_{AA} .
- Smooth take over from CNM effect in d+Au/peripheral Cu+Cu systems to central Cu+Cu/Au+Au systems as collision size increase.

Finalized soon IIII: HF e in Au+Au (62.4 GeV) at mid

- Non-zero v₂ component of HF e in Au+Au collisions at 62.4 GeV
 - consistent with v_2 in Au+Au collisions at 200 GeV

Summary

PHENIX measured open heavy flavors in various collision system
 many interesting results will be finalized soon

- Theoretical prediction works well!
 - consistent with Au+Au and over predicts suppression in Cu+Cu at mid-rapidity
 - consistent with d+Au and Cu+Cu at forward rapidity
- New PHENIX inner silicon vertex tracker system (VTX & FVTX) provides precise vertex position and allows to separate charm and bottom meson.

Back up

Heavy flavor muons R_{dA}, 40 - 60%

Heavy flavor muons R_{dA}, 20 - 40%

Heavy flavor electrons RAA at mid-rapidity

Heavy flavor μ R_{AA} at forward-rapidity

Phys. Rev. C 86, 024909 (2012)

RAA vs. N_{coll} at mid-rapidity

comparison between d+Au and Cu+Cu

