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Initial-state radiation

1 Hadronic collisions:

A

 Gluon radiation:

<> Gluon radiation/shower is a consequence of the collision
<> Radiation pattern depends on each event

< Treatment of radiation (approx.) depends on observables
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 Gluon radiation:

<> Gluon radiation/shower is a consequence of the collision
<> Radiation pattern depends on each event

< Treatment of radiation (approx.) depends on observables

0 Long-range soft-gluon interaction:

“Talk” between hadrons before the “hard” collision

Leading power — by unitarity, higher power — suppressed



Events with a single hard scale

1 Approximations:

B

) 4 GeV*? at LHC
< Active parton virtuality (fromshower): b 1 GeV? at RHIC

(p°) ~ (p7) ~ (1/fm)*log(5/Q*)log(Q*/(1/fm)?*) o log(1/xy)
<» On-shell approximation: (p*) ~ (p7) < Q°
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O Initial-state radiation:
¢ Perturbative singularity:  log(Q®/k7)|;2 .0 = PDFs

< Rest of k—phase-space: — «, corrections




Events with a single hard scale

1 Factorization (Approx.):
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< Leading power: y
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<> 1st power corrections:
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Events with a single hard scale

1 Factorization (Approx.):

A .:'!.E.I.!!
[f.] ‘_\—L\’\/\ [F’]
< Leading power:
doap(Q) = 5(Q ®f2®f2@

<> 1st power corrections: ﬁ*
2
p
+<Q—2>04®f2®f2 ®Dy))+ .. 4[);;/
D NO'faCtorization beyOnd 1/Q2! Venugopalan’s ta'k

2 2 2 2 P
When Q ~ PT ~ <p >Shower [OI‘ QS |mu1tiple scattering]’ every power I1s 'mportant!

More wave feature than particle feature = more collective behavior!



Single scale pA collisions

1 Factorization (Approx.):

NnPDFs



Single scale pA collisions

 Factorization (Approx.): Q~P,
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< Leading power:

doap(@ ~5(Q @ . { f419D2]  f3 = nPDFs

< Initial-state multiple scattering — power suppressed:
Resummation of A'3enhanced power corrections — broadening of <p;>

A



Single scale pA collisions

1 Factorization (Approx.):
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< Leading power:

doap(@ ~5(Q @ . { f419D2]  f3 = nPDFs

< Initial-state multiple scattering — power suppressed:
Resummation of A'3enhanced power corrections — broadening of <p;>

A

< Final-state multiple scattering — Jet quenching in pA:

“High” density medium - very short path — same as pp
“Cold” nuclear medium - power suppressed — smaller effect at LHC



nPDFs and shadowing

“Inclusive” dijets in pPb “Inclusive” charged particles
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Better probe of initial-state radiation

d Cross section of two scales (M, P-):
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Better probe of initial-state radiation

d Cross section of two scales (M, P-):

=/
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<> Z2%p; distribution:

Initial-state radiation (gluon shower) determines the low-p; distribution

< Each radiation is too soft to be calculated

—> Resummation of all radiations in Fourier space of P

<~ Precision tests in pp and ppbar collisions!

<> Z%in pA might be the best probe of gluon antishadowing!



Early approach to resummation

Q LO Differential Q,-distribution as Q;—0 : _a <
do (d—a) x2C, ( ) n(0°/07) = &
dydO; o \ Y )y 7 0; <
Q2
do do
), dO; = +0(a,) withQ’ =M,
0 dy dQ; real+virutal ' ( dy )Born ( ) '

4 Integrated Q;-distribution (DDT formula):

j%. do i’ ji_jz, do i Effect of gluon
0 dy dp 7% real+virutal ' 0 o dy dp 72" real+virutal ' eT|SS|on
0" 1n(OQ*/ p?
-[99) & 1—fzc,,0‘s (Qz/pT)d; _(4e ll C. 21’ (0 2/Qﬁ)]
- . TP A )orm 2
Or 1
do
~ = —C _31 2 2 2 : :
dy BomxeXp[ 7 (Q /QT)] «— Assume this exponentiates




Resummed Q; distribution

U Differentiate the integrated Q-distribution:

do (do n(0°/07) Ay a2 )
d0; (dy - 2C(ﬂ) 0; Xexp[_c”(?)ln 0 /QT)} -

as QT_>O

 compare to the explicit LO calculation:

2
do do x2C, ( 0*/0; ) . « | Q-spectrum (as Q;—0) is
dvdQ; |, dy - 7T 0= completely changed!

 We just resummed (exponentiated) an infinite series of
soft gluon emissions — double logarithms

—aSL‘ 1—O(L—|—(O(L) (O(L)

L<ln(0?/0?)

>“'V\' MV MV Soft gluon emission
treated as uncorrelated



Still a wrong Q-distribution

O Experimental fact:
do

dydQ;
0 Double Leading Logarithmic Approximation (DLLA):

=> finite [neither « nor 0!] as O, — 0

< Radiated gluons are both soft and collinear with strong
ordering in their transverse momenta
< lgnores the overall vector momentum conservation

< Double logs ~ random work ~ zero probability to be at Q; =0

DLLA over suppress small Q; region

Resummation of uncorrelated soft gluon emission
leads to too strong suppression at Q=0




Importance of momentum conservation

1 Vector momentum conservation:

Particle can receive many finite k; kicks via soft gluon radiation,
but, yet still has Q=0

mmms) Need vector sum!

d Subleading logarithms are equally important at Q=0

O Solution:

Impose 4-momentum conservation at each step of soft gluon
resummation



CSS “b”-space resummation formalism

4 Leading order K,-factorized cross section:

a’k dzk dk
aragy 2]
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(Pert) (Asym)
do’,, ~ do’,

dQ*dQ; dQ*dQ;

_ @jdb J\(bQ,) bW ,(b,0)+

The Q-distribution is determined by the b-space function: »W,5(b, Q)



Resummation = CS + RG equations

1 b-space distribution:
Wap(b,Q) = ZWZJ (b, Q)6

d Collins-Soper equation:

o
Jln Q2 Wij (b’ Q) [K(b”’ as) + G(Q/,LL, Ofs)] (] (b Q) (1)
 Evolution kernels satisfy RG equation:
9 1
5in gz 1k (01 ts) = =5y (s () @)
o 1
O1n p?2 G(Q/p, as) = Syr(as(p)) (3)
- Solution - resummation: Sudakov form factor
Wii(b,Q) = Wi (b, 1/b)e —Sz’j(b,Q)/ All large logs
/

Boundary condition - perturbative if b is small!




Perturbative solution at small “b”

 Boundary condition - collinear factorization:

Wij (b, Q) — Z Oij—Z [¢a/A %Y Ca—m’] ® [¢b/B & Cb_ﬁ}
a,b

] Perturbative solution: T Collinear PDFs
WES 0.Q) = 3 0127 [0/ © Cani] © [1/5 ® Cooy] x €550
a,b,t,7

1 Extrapolation to large-b?

< Non-perturbative sResum / db Jo(qr b)b W (b, Q)
< Predictive power? 0



Phenomenology — uncertainty?

. Qiu, Zhang, 2001
J Resummed cross section: g-

pW(b,0)]
d resum ®.@)
CABSZ / db Jo(qrb) bW (b, Q)
i 0

ert

W(b,Q) = { 9 b < ba

Wpert<bmaxa Q)FQZ (b Q bmax) b > bmax

. b, GeV)
d Resummed cross section: : P

2b2

F&F (b, Qs bmas) = exp{ (2202 (g1 (697 = (,0,)°)
Leading twist

Intrinsic power 92 (b - bmaw)]

corrections T~ 5 g \
— g2 (b —b ) } Dynamical power

maxT .
corrections

U Predictive power:

v Larger Q e smaller b,, === Better prediction
< Larger S
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Phenomenology — Tevatron

CDF Run-I|
CTEQ-5
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No free fitting parameter!



Phenomenology - Z° @ LHC

Kang, Qiu, 2012
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Effectively NO non-perturbative uncertainty!



Nuclear dependence in pPb

1 Resummed partonic hard parts are insensitive to A:

ngt(b’ Q) — Z Oij—Z [¢a/A & Ca—m:} ) [be/B 04 Cb_>j] X e_S"'j(b’Q)

CL?b?i?j

Only source of A-dependence is from nPDFs

U Large-b non-perturbative parts are sensitive to A:
WNonpert(b’ Q) — Wpert(bma,acv Q) ngp(b, Q, bmagc)

Fg;(b,Q; bmaz) = exp{ — ln(Q ety [91 ((bz)o‘ — (bfnam)a\

2b2

c2

Intrinsic power
corrections

+gs (b2 — b2,

T~

— g2 (52 —bras

I_/eading twist

)]

TR

Dynamical power
corrections

4 g, = Power correction to evolution of K and G:

92O<Q§

>

g2 = g2 Al/3



Expectations - pPb @ LHC

4 Strong gluon shower ‘ <p;2> >> Q2

6; 100 | 1 i
N : -
=~ go L/ ! Small contribution
= | from large-b
wof s
o : Small A-dependent
40 fr ! | power corrections
0 [ i
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Cy 1 _ Cover nPDFs for a much
p= - R >bnge >1-2GeV wider range of Q (or )!

Strong shadowing and antishadowing effect for Z° — production!
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Nuclear PDFs - the “gluon”
d NLO global fitted nPDFs:
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< Huge differences in nuclear gluon distributions

Large antishadowing in EPS09, but, almost none in nPDFs of nDS



Predictions — pPb @ LHC

d “Discovering” the antishadowing?
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A'3-type power correction has almost “NO” effect! (large Q!)



Summary

d Initial-state radiation pattern depends on observables/events

1 Observables with two scales (large + small) are sensitive to
initial-state gluon radiation/shower

d Z° production is an excellent benchmark for testing QCD

d R, of Z° production vs p; is an ideal probe of nuclear gluons
(sensitive to both shadowing and and antishadowing)

Theoretical calculation is insensitive to non-perturbative physics
other than nPDFs (stronger gluon showery)!

Thank you!



