Jet Production and Structure in pp, p-Pb and Pb-Pb Collisions Measured by the ALICE Experiment

Jiri Kral
University of Jyväskylä
on behalf of the ALICE collaboration

IS2013
Outline

• Motivation

• “Full” (charged + neutral) jets in pp
 • Correction for charged particle contamination
 • Triggering
 • pp jet cross-section and structure

• Jets in Pb-Pb
 • Background
 • Unfolding
 • Cross-section, structure, R_{AA}
Jets

- Jets originate from the hard scattering of partons
 - Fragment and hadronize into a spray of particles
- The spray (initial parton) is recovered using jet algorithms
 - Resulting jets depend on algorithm choice and constituent cuts
- Tests of PDFs, fragmentation and pQCD hard scattering
The ALICE detector

EMCal:
Shashlik Pb/organic scintillator sampling electromagnetic calorimeter
$|\eta| < 0.7; \ 1.4 < \Phi < \pi$
$\Delta\eta \sim \Delta\Phi \sim 0.014$

TPC + ITS (silicon) tracking
$|\eta| < 0.9; \ 0 < \Phi < 2\pi$

Charged constituents (tracks)

JET

Neutral constituents (clusters, optional)
Data sets and jet reconstruction

- Data
 - $pp \sqrt{s} = 2.76 \text{ TeV}$
 - $Pb–Pb \sqrt{s_{NN}} = 2.76 \text{ TeV}$
 - $p-Pb \sqrt{s_{NN}} = 5.02 \text{ TeV}$

- Jets
 - Charged tracks (ITS+TPC) and clusters from EMCal (full jets only)
 - Anti-k_T algorithm for signal jets, k_T for background
 - Jets fully contained in acceptance
 - $R = 0.2 – 0.6$
Correction for charged particle contamination

- Charged particles deposit energy in EMCal
- Need to avoid double counting of the momenta
- Tracks are matched to clusters and up to 100% \((f = 1)\) of their momenta is subtracted from the cluster energy

\[
E_{\text{cluster}}^{\text{corr}} = E_{\text{cluster}}^{\text{orig}} - f \cdot \sum E_{\text{track}}
\]

\(E_{\text{cluster}}^{\text{corr}} \geq 0\)
EMCal triggers

- EMCal triggers on integrated energy deposits in a given area
- Triggers are formed by sliding window algorithms of different granularity and steps
 - L0 (600ns), 4x4 towers
 - L1 (~5µs), 4x4 towers without FEE HW borders
 - L1 (~5µs), 32x32 towers, jet trigger
Trigger bias and efficiency in pp

- Trigger selects high-energy jets
- The trigger bias needs to be understood and corrected in the cross-section measurement
- Studied using full MC simulation, good agreement with data
Jet cross-section and structure in pp

- Inclusive jet cross section and structure

\[R = 0.4 \]

- Good agreement with NLO + hadronization

Jets in medium

- Jets are important probes of the medium that the parton passes through
 - Parton interacts strongly with the medium
 - Parton loses energy due to induced gluon radiation
- Removing the soft background contribution to the jets is an experimental challenge
- p-Pb collisions allow us to probe cold nuclear matter effects

\[
R_{AA} = \frac{\sigma_{pp}^{\text{inel}}}{\langle N_{\text{coll}} \rangle} \frac{d^2 N_{AA}}{d p_T d \eta} \frac{d^2 \sigma_{pp}}{d p_T d \eta}
\]
Underlying event

- Event-by-event subtraction
- ρ_{charged} calculated using k_T jets p_T/A
- ρ_{scaled} is scaled from ρ_{charged}

$\rho_{\text{scaled}} = s_{\text{emc}} \cdot \rho_{\text{charged}} = s_{\text{emc}} \cdot \text{median}(p_T^k / A k_T^\text{jet})$

s_{emc} scale in between charged and full jets

- Within-event fluctuations determined by
 - Random cones
 - Embedded track with anti-k_T algorithm

\[
\delta^{RC}_{p_T} = p_{T\text{rec}}^{\text{jet}} - \rho \cdot \pi R^2
\]

\[
\delta^{\text{emb}}_{p_T} = p_{T\text{rec}}^{\text{jet}} - \rho \cdot A \cdot A^n - k_T^\text{jet} - p_{T\text{emb probe}}^{\text{med}}
\]

arXiv:1207.2392
Leading particle bias

- Offline requirement of a high-p_T jet constituent
- The bias allows the removal of combinatorial jets, made of soft particles
- 5 GeV/c track required in analysis
Unfolding

- Unfolding used to obtain true jet spectrum
- Bayesian, SVD (Singular Value Decomposition) or χ^2 minimization methods used

$$RM_{\text{detector}} \cdot RM_{\text{bkg}} = RM_{\text{total}}$$

Anti-k_T $R=0.2$

- $p_{T,\text{track}} > 0.15 \text{ GeV/c}$
- $E_{\text{cluster}} > 0.30 \text{ GeV}$
- $p_{T,\text{leading}} > 5 \text{ GeV/c}$

Detector Efficiency

PYTHIA pp $\sqrt{s}=2.76$ GeV

(a) RM_{det} Detector response matrix
(b) RM_{bkg} Background fluctuation matrix
(c) $RM_{\text{tot}} = RM_{\text{bkg}} \times RM_{\text{det}}$

$Pb-Pb \sqrt{s_{NN}}=2.76$

0-10% Centrality

ALICE PERFORMANCE
15/10/2012
Pb-Pb jets

Full jets

Charged jets

- Leading particle bias, central events 0-10%, R = 0.2
- Charged jets are not corrected for the neutral part
Pb-Pb jet structure

- No significant jet broadening within the uncertainties for charged jet ratio $R_{0.2}/R_{0.3}$
- Good agreement with Pythia + JEWEL
- From inclusive spectra with no leading track bias
Jet vs hadron R_{AA}

- Similar R_{AA} value for most central collisions for jets and charged hadrons at high-$p_T \sim 0.4$
Other results...

- See M. Ploskon's talk from Tuesday
- More information R_{pPb} and R_{CP} available ($R_{pPb} \sim 1$)

\[\begin{align*}
R_{CP} \\
\text{charged (GeV/c)} \\
\end{align*} \]

\[\begin{align*}
p_{T} \\
PbPb \\
p-Pb
\end{align*} \]
Conclusion

- Charged and full (charged+neutral) jet spectra were analyzed in several collision systems collected by the ALICE experiment

- Jet structure measured in pp collisions is well described with NLO + hadronization model

- Full jet R_{AA} from the 10% most central events is comparable with charged hadrons R_{AA} in high-p_T

- Within uncertainties there is no observation of jet broadening between $R = 0.2$ and 0.3 due to in-cone radiation
Backup
Cold nuclear matter, p-Pb

- Charged jets
- No suppression observed
- Scaled pp 7 TeV spectra used as a reference (slide 26)

\[N_{5\,\text{TeV}} = N_{7\,\text{TeV}} \cdot \frac{N_{5\,\text{TeVMC}}}{N_{7\,\text{TeVMC}}} \]
p-p jet structure

- Jet collimation increases weakly with p_T
- Good agreements with NLO + hadronization within uncertainties

![Graph showing jet structure with $p_{T,\text{jet}}$ vs. $\sigma(R=0.2)/\sigma(R=0.4)$](image)

Geometrical ratio $0.2/0.4 = 0.25$

Detector effects

- Bin-by-bin technique
 - Compare the MC cross-section before and after the detector response
 - Use uncorrected spectrum in data as weighting function
- **Shift of jet energy scale ~ 20-25%**
 - Unmeasured neutrons and K^0_L: compare proton and kaon spectra to data; PYTHIA vs HERWIG
 - Tracking inefficiency: track quality in data vs MC
 - Residual hadronic correction for EMCal: data-driven check
 - JES uncertainty ~ 4%
- **Jet energy resolution ~ 18%**
 - Detector resolution: data-driven check + test beam
 - Fluctuations (e-by-e) in correction of jet energy scale
Response matrix

Anti-k_T $R=0.2$

- $p_{T,\text{track}} > 0.15 \text{ GeV/c}$
- $E_{T,\text{cluster}} > 0.30 \text{ GeV}$
- $p_{T,\text{leading}} > 5 \text{ GeV/c}$

(a) RM_{det} Detector response matrix
(b) RM_{bkg} Background fluctuation matrix
(c) $\text{RM}_{\text{tot}} = \text{RM}_{\text{bkg}} \times \text{RM}_{\text{det}}$

Pb-Pb $\sqrt{s_{NN}}=2.76 \text{ TeV}$
0-10% Centrality

Detector Efficiency
PYTHIA pp $\sqrt{s}=2.76 \text{ GeV}$

IS2013 Jiri Kral 23
Bayesian unfolding

Measured p_T range

Unfolded p_T range

Residual combinatorial jets

Iteration choice
pp reference for pPb

Different scaled references compared to used reference

Ratio

$\frac{y}{x}$

p_T (GeV/c)
pp scaled reference
Background MC

FastJet k_t ($p_t^{\text{min}} = 0.15$ GeV/c)
Fit: (-3.3 ± 0.3) GeV/c + (0.0623 ± 0.0002) GeV/c $\times N_{\text{raw input}}$

Pb-Pb $\sqrt{s} = 2.76$ TeV

ALICE JHEP03 (2012) 053, arxiv:1201.2423
Pb-Pb, charged jets

Two jet cone variables: 0.2, 0.3

Strong suppression for central collisions
Pb-Pb, charged jets

Leading particle trigger

Strong suppression for jets. Not dependent on p_T
QCD vacuum p-p baseline

- Inclusive jet cross section

R = 0.2

- Good agreement with NLO + hadronization

R = 0.4

\[d_{ij} = \min\left(k_{Ti}^p, k_{Tj}^p\right) \frac{R_{ij}^2}{R^2} \]

\[R_{ij}^2 = (\eta_i - \eta_j)^2 + (\varphi_i - \varphi_j)^2 \]

\[d_{iB} = k_{Ti}^p \]

\[k_T: p = 2 \quad \text{Anti-} k_T: p = -2 \]