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QCD at high energies (small-x physics)

• In the framework of QCD with a large number of colours, 
strong interactions are mediated by the exchange of interacting 
BFKL pomerons

• The pomerons split and fuse by triple pomeron vertices 

In this presentation we are going to consider corrections to 
the BFKL dynamics



Deep inelastic scattering
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Fig. 5: Left: the DIS process. Right: the absorption of the virtual photon by a quark.

so these fluctuations are now well separated from the those of the vacuum (which have a lifetime
⇠ 1/⇤QCD in any frame, since the vacuum is boost invariant). The lifetime (2) is much larger than
the duration of a typical collision process (see below); so, for the purpose of scattering, the hadronic
fluctuations can be viewed as free, independent quanta. These quanta are the partons (a term coined by
Feynman). It then becomes possible to factorize the cross–section (say, for a hadron–hadron collision)
into the product of parton distribution functions (one for each hadron partaking in the collision), which
describe the probability to find a parton with a given kinematics inside the hadronic wavefunction, and
partonic cross–sections, which, as their name indicates, describe the collision between subsets of par-
tons from the target and the projectile, respectively. If the momentum transferred in the collision is hard
enough, the partonic cross–sections are computable in perturbation theory. The parton distributions are
a priori non–perturbative, as they encode the information about the binding of the partons within the
hadron. Yet, there is much that can be said about them within perturbation theory, as we shall explain.
To that aim, one needs to better appreciate the role played by the resolution of a scattering process. In
turn, this can be best explained on the example of a simpler process: the electron–proton deep inelastic
scattering (DIS).

The DIS process is illustrated in Fig. 5 (left): an electron with 4–momentum `
µ

scatters off the
proton by exchanging a virtual photon (�⇤) with 4–momentum q

µ

and emerges after scattering with
4–momentum `

0
µ

= `
µ

� q
µ

. The exchanged photon is space–like :

q2 = (` � `0)2 = �2` · `0 = �2E
`

E
`

0
(1 � cos ✓

``

0
) ⌘ �Q2 with Q2 > 0, (3)

with E
`

= |`|, E
`

0
= |`0|, and ✓

``

0
= \(`, `0). The positive quantity Q2 is referred to as the ‘virtuality’.

The deeply inelastic regime corresponds to Q2 � M2, since in that case the proton is generally broken
by the scattering and its remnants emerge as a collection of other hadrons (denoted by X in Fig. 5). The
(inclusive) DIS cross–section involves the sum over all the possible proton final states X for a given `0.

A space–like probe is very useful since it is well localized in space and time and thus provides
a snapshot of the hadron substructure on controlled, transverse and longitudinal, scales, as fixed by the
kinematics. Specifically, we shall argue that, when the scattering is analyzed in the proton IMF, the
virtual photon measures partons which are localized in the transverse plane within an area ⌃ ⇠ 1/Q2

and which carry a longitudinal momentum k
z

= xP , where x is the Bjorken variable :

x ⌘ Q2

2(P · q)
=

Q2

s + Q2 � M2
, (4)

where s ⌘ (P + q)2 is the invariant energy squared of the photon+proton system. That is, the two
kinematical invariants Q2 and x, which are fixed by the kinematics of the initial state (`, P ) and of the
scattered electron (`0), completely determine the transverse size (⇠ 1/Q) and the longitudinal momentum
fraction (x) of the parton that was involved in the scattering. This parton is necessarily a quark (or
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Deep inelastic regime: Q2 = �q2 � M2

Bjorken variable: x =
Q

2

s+Q

2 �M

2

This kinematic variables are fixed 
by initial condition         and (l, P ) l0

They determine transverse area         and
longitudinal momentum of the parton
that is involved in the scattering

1/Q
xP



Deep inelastic scattering
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Fig. 9: Parton evolution in perturbative QCD. The parton cascade on the right involves only gluons (at intermediate
stages) and is a part of the BFKL resummation at small x (see the discussion around Eq. (22)).

is known as the gluon distribution. The last estimate above follows from the uncertainty principle:
partons with longitudinal momentum k

z

= xP are delocalized in z over a distance �z ' 1/k
z

. Hence,
the gluon distribution yields the number of gluons per unit of longitudinal phase–space, which is indeed
the right quantity for computing the occupation number. Note that gluons with x ⌧ 1 extends in z
over a distance �z ⇠ 1/xP which is much larger than the Lorentz contracted width of the hadron,
R/� ⇠ 1/P . This shows that the image of an energetic hadron as a ‘pancake’, that would be strictly
correct if the hadron was a classical object, is in reality a bit naive: it applies for the valence quarks with
x ⇠ O(1) (which carry most of the total energy), but not also for the small–x partons (which are the
most numerous, as we shall shortly see).

(ii) When decreasing x at a fixed Q2, one emits mostly gluons which have smaller longitudinal
momentum fractions, but which occupy, roughly, the same transverse area as their parent gluons (see
Fig. 11 right). Then the gluon occupation number, Eq. (17), increases, showing that the gluonic system
evolves towards increasing density. As we shall see, this evolution is quite fast and eventually leads to a
breakdown of the picture of independent partons.

In order to describe the small–x evolution, let us start with the gluon distribution generated by
a single valence quark. This can be inferred from the bremsstrahlung law in Eq. (16) (the emission
probability is the same as the number of emitted gluons) and reads

x
dN

g

dx
(Q2

) =

↵
s

C
F

⇡

Z

Q

2

⇤2
QCD

dk2
?

k2
?

=

↵
s

C
F

⇡
ln

 

Q2

⇤

2
QCD

!

, (19)

where we have ignored the running of the coupling — formally, we are working to leading order (LO) in
pQCD where the coupling can be treated as fixed — and the ‘infrared’ cutoff ⇤QCD has been introduced
as a crude way to account for confinement: when confined inside a hadron, a parton has a minimum
virtuality of O(⇤

2
QCD). In Eq. (19) it is understood that x ⌧ 1. In turn, the soft gluon emitted by

the valence quark can radiate an even softer gluon, which can radiate again and again, as illustrated in
figure 10. Each emission is formally suppressed by a power of ↵

s

, but when the final value of x is tiny,
the smallness of the coupling constant can be compensated by the large available phase–space, of order
ln(1/x) per gluon emission. This evolution leads to an increase in the number of gluons with x ⌧ 1.

For a quantitative estimate, consider the first such correction, that is, the two–gluon diagram in
Fig. 10 left: the region in phase–space where the longitudinal momentum fraction x1 of the intermediate
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Emission of intermediate gluon is 
enhanced by large factor ln(1/x)

The BFKL equation sums all ladder diagrams

↵s ⌧ 1, ↵sln(1/x) ⇠ 1

@N(y, r1, r2)

@y
=

↵̄

2⇡

Z
d2r3

r212
r213r

2
23

⇣
N(y, r1, r3) +N(y, r2, r3)�N(y, r1, r2)

⌘

The equation sums all contribution of 
the order

�
↵s ln s

�n



Deep inelastic scattering
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Fig. 11: Left: the 1/x–evolution of the gluon, sea quark, and valence quark distributions for Q2

= 10 GeV2, as
measured at HERA (combined H1 and ZEUS analysis [4]). Note that the gluon and sea quark distributions have
been reduced by a factor of 20 to fit inside the figure. Right: the ‘phase–diagram’ for parton evolution in QCD;
each coloured blob represents a parton with transverse area �x? ⇠ 1/Q2 and longitudinal momentum k

z

= xP .
The straight line ln Q2

s

(x) = �Y is the saturation line, cf. Eq. (25), which separates the dense and dilute regimes.

This growth is indeed seen in the data: e.g., the HERA data for DIS confirm that the proton
wavefunction at x < 0.01 is totally dominated by gluons (see Fig. 11 left). However, on physical
grounds, such a rapid increase in the gluon distribution cannot go on for ever (that is, down to arbitrarily
small values of x). Indeed, the BFKL equation is linear — it assumes that the radiated gluons do not
interact with each other, like in the conventional parton picture. While such an assumption is perfectly
legitimate in the context of the Q2–evolution, which proceeds towards increasing diluteness, it eventually
breaks down in the context of the Y –evolution, which leads to a larger and larger gluon density. As long
as the gluon occupation number (17) is small, n ⌧ 1, the system is dilute and the mutual interactions
of the gluons are negligible. When n ⇠ O(1), the gluons start overlapping, but their interactions are
still weak, since suppressed by ↵

s

⌧ 1. The effect of these interactions becomes of order one only
when n is as large as n ⇠ O(1/↵

s

). When this happens, non–linear effects (to be shortly described)
become important and stop the further growth of the gluon distribution. This phenomenon is known as
gluon saturation [5–7]. An important consequence of it is to introduce a new transverse–momentum
scale in the problem, the saturation momentum Q

s

(x), which is determined by Eq. (17) together with the
condition that n ⇠ 1/↵

s

:

n
�

x, Q2
= Q2

s

(x)

�

⇠ 1

↵
s

=) Q2
s

(x) ' ↵
s

xg
�

x, Q2
s

(x)

�

R2
. (23)

Except for the factor ↵
s

, the r.h.s. of Eq. (23) is recognized as the density of gluons per unit transverse
area, for gluons localized within an area ⌃ ⇠ 1/Q2

s

(x) set by the saturation scale. Gluons with k? 
Q

s

(x) are at saturation: the corresponding occupation numbers are large, n ⇠ 1/↵
s

, but do not grow
anymore when further decreasing x. Gluons with k? � Q

s

(x) are still in a dilute regime: the occupation
numbers are relatively small n ⌧ 1/↵

s

, but rapidly increasing with 1/x via the BFKL evolution. The
separation between the saturation (or dense, or CGC) regime and the dilute regime is provided by the
saturation line in Fig. 11 right, to be further discussed below.

The microscopic interpretation of Eq. (23) can be understood with reference to Fig. 12 (left) :
gluons which have similar values of x (and hence overlap in the longitudinal direction) and which occupy
a same area ⇠ 1/Q2 in the transverse plane can recombine with each other, with a cross–section �

gg!g

'
↵
s

/Q2. After taking also this effect into account, the change in the gluon distribution in one step of the
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At large densities saturation is important.
One should take into account non-linear effects

@N(y, r1, r2)

@y
=

↵̄

2⇡

Z
d2r3

r212
r213r

2
23

⇣
N(y, r1, r3) +N(y, r2, r3)�N(y, r1, r2)

⌘

↵s ⌧ 1, ↵sln(1/x) ⇠ 1

The BFKL equation is only valid at 
moderately high energies 

There are two ways to develop the theory at 
extremely high energies



Beyond leading logarithm approximation:
Balitsky-Kovchegov equation

@N(y, r1, r2)

@y
=

↵̄

2⇡

Z
d2r3

r212
r213r

2
23

⇣
N(y, r1, r3) +N(y, r2, r3)�N(y, r1, r2)�N(y, r1, r3)N(y, r3, r2))

γ∗

↵s ⌧ 1, ↵sln(1/x) ⇠ 1, ↵

2
sA

1/3
e

!(0)y ⇠ 1

� ⌘ ↵2
se

!(0)y ⌧ 1

One can consider scattering on heavy nucleus target and take into 
account triple-pomeron vertex 

BFKL

The BK equation is valid for the 
following kinematic conditions

BK

y



γ∗ Non-BK pomeron loops

� ⌘ ↵2
se

!(0)y ⇠ 1

Beyond leading logarithm approximation:
scattering on single hadrons

� ⌘ ↵2
se

!(0)y ⌧ 1

y

We are going to compare this two amplitudes



Loop contribution

• It is important to estimate the role of pomeron loops at present 
energies

• This will help to understand validity of the quasi-classical methods

• This seems to be straightforward. We have all instruments for this 
goal:  the BFKL propagator and the triple pomeron vertex

• The only obstacle is the most complicated form of the letter
• A realistic calculation is a formidable task



Loop contribution

Interaction part of the Lagrangian of effective 
non-local field theory (M. Braun, Phys. Lett. B 632 (2006) 297–304):

LI =
2↵2

sNc

⇡

Z
d2r1d2r2d2r3
r212r

2
23r

2
13

�(y, r2, r3)�(y, r3, r1)L12�
†(y, r1, r2) + h.c.,

L12 = r412r2
1r2

2 r1 r2

r3 r4 r5 r6

µ1

µ2 µ3

�(r1, r2|r3, r4; r5, r6) =
X

µ1,µ2,µ3>0

�µ1|µ2,µ3
Eµ1(r1, r2)E

⇤
µ2
(r3, r4)E

⇤
µ3
(r5, r6)

Conformal representation of the triple-pomeron vertex:

Eµ(r1, r2) =
⇣ r12
r10r02

⌘h⇣ r⇤12
r⇤10r

⇤
02

⌘h̄

We consider the loop by the conformal invariant technique. We present all 
constituents in terms of conformal basis formed by functions:

µ = {n, ⌫, r0}

X

µ>0

=
1X

n=�1

Z 1

0
d⌫

1

ah

Z
d2r0, ah =

⇡4

2

1

⌫2 + n2/4

Integration over

Integration over

ri, r̄j

n, ⌫, r0

h =
1 + n

2
+ i⌫; h̄ = 1� h⇤.

The triple pomeron vertex was 
introduced in:

• J. Bartels, Z. Phys. C 60, 471 (1993)
• J. Bartels, M. Wuesthoff, Z. Phys. C 66, 157 (1995)
• A.H. Mueller, B. Patel, Nucl. Phys. B 425, 471 (1994)
• M.A. Braun, G.P. Vacca, Eur. Phys. J. C 6, 147 (1999)



Triple-pomeron vertex

�(0)
µ1|µ2,µ3

= R↵12
12 R↵23

23 R↵13
13 ⇥ (c.c.)⇥ ⌦(h̄1, h2, h3)

The structure of the vertex is fixed by conformal invariance:

The explicit form of the vertex was found by Korchemsky:

⌦(h1, h2, h3) = ⇡3
⇥
�2(h1)�

2(h2)�(1� h1)�(1� h2)�(1� h3)
⇤�1

⇥
3X

a=1

Ja(h1, h2, h3)J̄a(h̄1, h̄2, h̄3)

J functions are convolutions of 
hypergeometric functions

Structure of the triple-pomeron 
vertex is very complex!!!

µ1 = {n1, ⌫1, R1}

µ2 = {n2, ⌫2, R2} µ3 = {n3, ⌫3, R3}



Triple-pomeron vertex
J1(h1, h2, h3) = �(h1 + h2 � h3)�(1� h1)�(h1)�(1� h2)�(h2)

⇥
Z 1

0
dx (1� x)�h3

2F1(h1, 1� h1; 1;x)2F1(h2, 1� h2; 1;x);

J2(h1, h2, h3) =
�(h1 + h2 � h3)�(1� h1)�(h1)�(1� h2)�(h2)�2(1� h3)

�(1 + h1 � h3)�(2� h1 � h3)

J̄1(h̄1, h̄2, h̄3) = (�1)n1+n2
�(�h̄1 + h̄2 + h̄3)�(1� h̄2)�(1� h̄1)�(h̄1)

�(�h̄1 + h̄3 + 1)

⇥
Z 1

0
dx x

�h̄1(1� x)h̄2�1
2F1(h̄2,�h̄1 + h̄2 + h̄3;�h̄1 + h̄3 + 1;x)

⇥2F1(1� h̄3, 1� h̄1; 1;x);

⇥4F3

✓
h2, 1� h2, 1� h3, 1� h3

1, 2� h1 � h3, 1 + h1 � h3

���1
◆
;

J3(h1, h2, h3) = J2(h2, h1, h3);

J̄2(h̄1, h̄2, h̄3) = (�1)n1
�(1� h̄1)�(h̄3)�(�h̄1 + h̄2 + h̄3)�(1� h̄2)

�2(�h̄1 + h̄3 + 1)

⇥
Z 1

0
dx x

h̄3�h̄1(1� x)h̄2�1
2F1(1� h̄1, 1� h̄1;�h̄1 + h̄3 + 1;x)

⇥2F1(h̄2,�h̄1 + h̄2 + h̄3;�h̄1 + h̄3 + 1;x);

J̄3(h̄1, h̄2, h̄3) = J̄3(h̄2, h̄1, h̄3).



Previous attempts

J. Bartels, M. Ryskin, G.P. Vacca, Eur. Phys. J. C 27, 101 (2003)

• The pomeron loop was calculated with an approximate form 
of the triple-pomeron vertex (was taken with fixed 
conformal parameters)

• The single-loop contribution to scattering amplitude was 
found

• It was found that the loop gives no significant contribution 
up to extraordinary high energies (rapidities of the order of 
40)

M.A. Braun, Eur. Phys. J. C 63, 287 (2009) 

• The pomeron loop was calculated with an exact form of the 
triple-pomeron vertex (dependence on internal parameters 
was considered)

• The single loop contribution to the BFKL pomeron 
propagator was considered (an external parameter was 
fixed)

• The loop begins to dominate already at rapidities of the 
order of 10−15

⌫1 = 0

⌫2 = 0 ⌫3 = 0

⌫1 = 0

⌫3⌫2



M.A. Braun, Eur. Phys. J. C 63, 287 (2009) 

• The pomeron loop was calculated with an exact form of the 
triple-pomeron vertex

• The single loop contribution to the BFKL pomeron 
propagator was considered

• The loop begins to dominate already at rapidities of the 
order of 10−15

Previous attempts

1. This result did not solve the real physical problem, the contribution of the 
loop to the scattering amplitude, which is obtained after integration with 
external particles

2. The full dependence on conformal parameters should be used
3. This can change estimation of the loop magnitude

⌫1 = 0

⌫3⌫2 ⌫3⌫2

⌫1



Scattering amplitude with bare pomeron exchange

A(s, t) = is

Z �+i1

��i1

d!

2⇡i
s!f!(q

2)

f!(q
2) =

Z
d2rd2r0 �1(r, q)g

q
!(r, r

0)�⇤
2(r

0, q)

The amplitude for scattering of two hadrons in 
terms of complex angular momentum:

The amplitude in the lowest order is a convolution of the 
bare pomeron propagator with two impact factors:

It is sufficient to consider forward scattering amplitude. The 
conformal representation of the propagator at
was found in L.N. Lipatov, Zh. Eksp. Teor. Fiz. 90 1536 (1986)

q2 ! 0

g0!(r, r
0) =

1

⇡2
|rr0|

X

n

Z 1

0
d⌫

���
r

r0

���
2i⌫⇣r⇤r0

rr0⇤

⌘n/2
g!,h

We consider the leading contribution at n = 0

g0!(r, r
0) =

1

⇡2

Z 1

0
d⌫ |r|1+2i⌫ |r0|1�2i⌫g!,⌫



Impact factors

�(r, 0) =
�b

⇡
e�br2

Z
d2r�(r, 0)|r|1+2i⌫ =

�b

⇡
⇡b�3/2�i⌫�(3/2 + i⌫)

f!(0) =
1

⇡2

Z 1

0
d⌫ g!,⌫ ⇥ �2

b

⇣
⌫2 +

1

4

⌘ ⇡

cosh(⇡⌫)

It is natural to choose the impact factor in a gaussian form:

As a result integration with impact factors can be trivially done:

We find:

The forward scattering amplitude is

f!(0) =
1

⇡2

Z 1

0
d⌫ g!,⌫

Z
d2r�(r, 0)|r|1+2i⌫

Z
d2r0�⇤(r0, 0)|r0|1�2i⌫



Loop contribution

G!,⌫ =
1

1/g!,⌫ + l20⌫⌃!,⌫
=

1

l0⌫

1

! � !⌫
� ⌃!,⌫

(! � !⌫)2

To take into account the loop contribution one has to substitute the bare 
propagator by the full Green function. With the single loop insertion:

The first term in comes from exchange of the bare pomeron. It is not 
difficult to show that

A(1)
y (0) =

1

16⇡2

�2

b

Z 1

0
d⌫

1⇣
⌫2 + 1

4

⌘ ⇡

cosh(⇡⌫)
e!⌫y

The second term corresponds to the lowest order loop contribution.

The explicit form of the pomeron self-mass was found in
M.A. Braun, Eur. Phys. J. C 63, 287 (2009)

⌃!,⌫ =
↵4
sN

2
c

8⇡10

Z 1

0
d⌫1d⌫2

⌫21⇣
⌫21 + 1

4

⌘2

⌫22⇣
⌫22 + 1

4

⌘2

⌦2(1/2 + i⌫, 1/2 + i⌫1, 1/2 + i⌫2)

! � !(0, ⌫1)� !(0, ⌫2)



Scattering amplitudes

A(2)
y (0) = � 1

16⇡2

�2

b

Z 1

0
d⌫ 16

⇣
⌫2 +

1

4

⌘ ⇡

cosh(⇡⌫)

⇥↵4
sN

2
c

8⇡10

Z 1

0
d⌫1d⌫2

⌫21⇣
⌫21 + 1

4

⌘2

⌫22⇣
⌫22 + 1

4

⌘2⌦
2(1/2 + i⌫, 1/2 + i⌫1, 1/2 + i⌫2)

⇥
⇣ e!⌫yy

!⌫ � !⌫1 � !⌫2

� e!⌫1y

�
!⌫ � !⌫1 � !⌫2

�2 +
e(!⌫1+!⌫2 )y

�
!⌫ � !⌫1 � !⌫2

�2
⌘

The total forward scattering amplitude with the 
lowest order loop correction is a sum

Ay(0) = A(1)
y (0) +A(2)

y (0)

A(1)
y (0) =

1

16⇡2

�2

b

Z 1

0
d⌫

1⇣
⌫2 + 1

4

⌘ ⇡

cosh(⇡⌫)
e!⌫y

Bare pomeron exchange:

Single-loop contribution:



Details of numerical studies

• The most difficult part is the computation of the triple-pomeron vertex
• We have restricted conformal variables to lie in the interval                 and introduced a grid 

dividing this interval into N=20 points and found the vertex on this grid
• The value of the vertex in between the grid points was found by interpolation

0 < ⌫ < 3.0
⌦

We have set up a program which calculates the bare pomeron 
exchange amplitude and single-loop contribution

The scattering amplitudes were calculated by the Newton-Cotes integration formulas

• The limits were taken as
• The number of sample points was chosen to provide relative error

0 < ⌫ < 3.0

10�3

We have performed calculations for the standard value of the QCD coupling
constant                 and↵s = 0.2 Nc = 3



Numerical results
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• The behavior of the bare amplitude is determined by the initial pole of the conformal BFKL 
propagator

• The curve grows with rapidity roughly as       , where 
• The single-loop contribution with very good accuracy grows twice faster as
• For small rapidities the loop term is suppressed by the smallness of the QCD coupling 

constant
• However, its faster growth with rapidity compensates this very early
• The loop contribution becomes visible already at rapidities 3-8 and starts to dominate at 8-10
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Conclusions

• We have studied a single loop contribution to the scattering amplitude of two colliding 
hadrons

• We have found expression for the amplitude in a framework of conformal invariant technique 
with more or less general form of the impact factors

• The triple-pomeron vertex with full dependence on the intermediate conformal weights was 
calculated and used

• Numerical analysis shows that smallness of the QCD coupling constant is compensated by 
rapid growth of the single-loop amplitude with rapidity

• We found that loop contribution manifests itself at relatively small rapidities 3-8 and dominates 
the bare pomeron exchange amplitude already at 8-10


