

Search for CP Violation in Charm at the B-Factories

Ryan Mackenzie White U. of South Carolina / U. Técnica Federico Santa María

FPCP, Rio de Janeiro, 19 - 24 May 2013

University of South Carolina High Energy Physics Group

Outline

Introduction to CP Violation (CPV) in Mesons

Experimental observation of CPV in Charm meson decays

Measurements of CPV in Charm decays

- Indirect CPV and mixing in two-body decays
- Direct CPV in two-body decays
 - Interference between tree-level and penguin-level amplitudes in singly Cabibbo-suppressed decays.
 - Interference between Cabibbo-favored and doubly Cabibbo-suppressed amplitudes.
- Direct CPV in three-body singly Cabibbo-suppressed decays
 Conclusions

CP violation in decay to final states
$$f$$
 and \overline{f} $|A_f| \neq |\overline{A}_{\overline{f}}|$
Two amplitudes with different weak and strong phases
 $A_{CP} = \frac{|A_f|^2 - |\overline{A}_{\overline{f}}|^2}{|A_f|^2 + |\overline{A}_{\overline{f}}|^2}$
CP violation in mixing if $(r_m = |q/p| \neq 1)$
Probability of $D^0 \rightarrow \overline{D}^0$ is different than CP conjugate $\overline{D}^0 \rightarrow D^0$
 $|D_{1,2}^0\rangle = p|D^0\rangle \pm q|\overline{D}^0\rangle$ $(\frac{q}{p})^2 = \frac{M_{12}^* - \frac{1}{2}\Gamma_{12}^*}{M_{12} - \frac{1}{2}\Gamma_{12}}$
CP violation in the *interference* between the decay with and without
mixing if $(\phi_f \neq 0)$
 $\lambda_f = \frac{q}{p}\frac{\overline{A}_f}{A_f} = |\frac{q}{p}\frac{\overline{A}_f}{A_f}|exp[i(\delta_f + \phi_f)]$
strong + weak phase

* Three types of D meson decays

- Cabibbo-favored
 - examples: $D^0 \rightarrow K^-\pi^+$, $D^+ \rightarrow K^-\pi^+\pi^+$
 - $A_{T} \sim |V_{cs}V_{ud}|$
- ➡ singly Cabibbo-suppressed (SCS)
 - examples: $D^0 \rightarrow K^+K^-$, $D^0 \rightarrow \pi^+\pi^-$, $D^+ \rightarrow K^+K^-\pi^+$
 - $A_{T} \sim |V_{cd}V_{ud}|, |V_{cs}V_{us}|$
- doubly Cabibbo-suppressed (DCS)
 - $D^0 \rightarrow K^+ \pi^-$
 - $\bullet \quad A_T \sim |V_{cd}V_{us}|$

q,q'=s,d

- CP-violating asymmetries in charm decays provide a unique probe for physics beyond the Standard Model (SM)
- Standard Model charm physics is CP conserving to first order approximation.
- CP-violating asymmetries in charm are small.
- New Physics can enhance CP violating observables.

Wolfenstein parameterization of the CKM matrix

Standard Model: CP Violation arises from KM phase in CKM quark mixing matrix

$$V = \begin{bmatrix} 1 - \frac{1}{2}\lambda^2 & \lambda & A\lambda^3(\rho - i\eta + \frac{1}{2}\eta\lambda^2) \\ -\lambda & 1 - \frac{1}{2}\lambda^2 - i\eta A^2\lambda^4 & A\lambda^2(1 + i\eta\lambda^2) \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{bmatrix}$$

Charm Mesons:

• *CP* Violation is CKM suppressed at 10⁻³ or less.

 $\lambda = 0.22$

Is this an observation of new physics? No straightforward answer, could be SM or NP. More measurements with greater precision required!

Contract CPV measurements in two-body SCS decays probe the interference between tree-level and penguin-level amplitudes.

- Separate direct CPV contribution from D⁰ two-body decays to CP-even eigenstates.
- SCS decays with K_S⁰ in final state direct CPV compared with contribution from indirect CPV in K⁰ mixing.

 \star Direct CPV probing the interference between DCS and CF charged $D_{(s)}$ decays with K_s in the final state. Compare to expected SM CP violation from neutral Kaons.

Direct CPV can only arise due to an additional phase from New Physics

* Direct CPV exploiting final state interactions in 3-body decays. Measure asymmetries as a function of position on the Dalitz plot (3-body).

Mixing and CP violation observables are obtained from the partial widths of the decays:

$$D^{0}(\bar{D}^{0}) \to h^{+}h^{-}, h^{\pm} = K^{\pm}, \pi^{\pm}$$

• Mixing appears when the width of CP eigenstates differs from the flavor (CP-mixed) eigenstates, CF and DCS decays $D^0 \rightarrow K^{\dagger} \pi^{\pm}$.

 \bullet CP is violated if the width for D⁰ and \overline{D}^0 differs when decaying to the same CP eigenstate.

• The flavor (CP-mixed) eigenstates $D^0 \rightarrow K^{\dagger} \pi^{\pm}$ are assumed to be described by the average lifetime Γ .

Experimentally we measure the lifetimes of CP-even and CP-mixed eigenstates.

Experimental assumptions:

(i) small mixing (|x|, $|y| \ll 1$) proper time distributions are exponential with corresponding effective lifetimes to very good approximation.

(ii) not sensitive to direct CPV and weak phase does not depend on final state \rightarrow KK and $\pi\pi$ share the same common effective lifetime. [PRD 80, 076008 (2009)]

Effective lifetimes - measured quantities

$$\tau^{+} = \tau(D^{0} \to h^{+}h^{-})$$
$$\bar{\tau}^{+} = \tau(\bar{D}^{0} \to h^{+}h^{-})$$
$$\tau_{D} = \tau(D^{0} \to K^{\mp}\pi^{\pm})$$
$$h^{\pm} = K^{\pm}, \pi^{\pm}$$

Mixing:
$$y_{CP} = \frac{\tau_D}{2} \left(\frac{1}{\tau^+} + \frac{1}{\bar{\tau}^+} \right) - 1$$

CP Violation: $\Delta Y = \frac{\tau_D}{2} \left(\frac{1}{\tau^+} - \frac{1}{\bar{\tau}^+} \right)$

If CP is conserved $y_{CP} \equiv y$ and $\Delta Y = A_{\Gamma} = 0$

Reconstruction Techniques

Tagged Candidates $D^* \rightarrow D^0 \pi_s$, sample purities > 98%

Slow pion reconstructed and D⁰ decays selected with two dimensional cut $[m(D^0), q]$

$$q = (M_D^* - M(h^+h^-) - m_\pi)c^2$$

Untagged $D^0 \rightarrow K^+K^-$, $K^{\overline{+}}\pi^{\pm}$ candidates with sample purities $\sim 75\%$.

Statistically independent samples used in BaBar analysis to improve sensitivity of y_{CP} and Δy .

Selection of signal events

- remove D from B decays, $p_{CM}(D^0) > 2.5 \text{ GeV/c}$
- Belle measures D^0 lifetime in intervals of p_{CM} due to resolution function offset. Increase $p_{CM}(D^0) > 3.1 \text{ GeV/c}$: Decay time uncertainty evaluated eventfor Y(5S) dataset
- Vertex fit requirements, Particle ID using Cherenkov detectors.

Resolution on proper time adequate for mixing measurements.

by-event from error matrices from production and decay vertices

Belle Lifetime Ratio Analysis

arXiv: 1212.3478

- Belle uses tagged decays
- Full dataset 976 fb⁻¹
- Many systematics cancel in the relative lifetime measurements.
- Measured in intervals of the D⁰ center-of-mass polar angle due to resolution function offset dependence.

and a second second

BaBar Lifetime Ratio Analysis

BaBar uses independent datasets of tagged and untagged decays with full dataset 468 fb⁻¹.

Simultaneous fit to all decays both tagged and untagged to measure the lifetime.

UNIVERSIDAD TECNICA

Belle: arXiv: 1212.3478

BaBar has most precise measurement for mixing parameter y_{CP} . BaBar central value is closer to zero.

14

Direct CPV due to interference of CF and DCS decays

Direct CPV is evidence of NP in interference between CF and DCS amplitudes in $D^{\pm} \rightarrow K_{S,L}\pi^{\pm}$ and $D_s \rightarrow K_{S,L}K^{\pm}$

Direct CP Violation

- Single weak phase in SM, therefore expect NO CPV
- SM contribution due to K^0 mixing $A_{SM} \sim 3.3 \times 10^{-3}$
- Experimental uncertainties at sub percent level

Direct CPV in SCS decays

- $D^{\pm} \rightarrow K^{+}K^{-}\pi^{\pm}, D^{0} \rightarrow h^{+}h^{-}\pi^{0}, D^{\pm} \rightarrow K_{S}K^{\pm}, D_{s} \rightarrow K_{S}\pi^{\pm}, D^{0} \rightarrow K^{+}K^{-}, D^{0} \rightarrow \pi^{+}\pi^{-}, \text{ decays with } \eta \dots$
- SCS decays are unique probe gluonic penguin operators.
- CP asymmetry generated from interference of tree-level and penguin-level amplitudes.
- In SM effects up 10⁻³ may be observable with NP models generating ~ 10^{-2} Grossman, Kagan, Nir PRD 75, 036008 (2007)
- Source of new physics most likely contributes to decay via loop-diagrams.

$$\begin{split} A\big(D \to f\big) &\equiv A_f = \left|A_1\right| e^{i\delta_1} e^{i\phi_1} + \left|A_2\right| e^{i\delta_2} e^{i\phi_2}, \quad \Delta \delta \neq 0, \Delta \phi \neq 0\\ A_{CP} &= \frac{|A_f|^2 - |\bar{A}_{\bar{f}}|^2}{|A_f|^2 + |\bar{A}_{\bar{f}}|^2} = \frac{2|A_1A_2|\sin(\delta_2 - \delta_1)\sin(\phi_2 - \phi_1)}{|A_1|^2 + |A_2|^2 + 2A_1A_2\cos(\delta_2 - \delta_1)} \end{split}$$

UNIVERSIDAD TECNICA

For final CP eigenstates, indirect CPV is universal. Difference in time-integrated CP asymmetry separates non-universal direct CPV contribution.

 $\Delta A_{CP}^{direct} = A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-)$

No CF transition - amplitude for tree-level and penguin level are comparable. Penguin amplitude has relative weak phase to tree-amplitude - relevant interference.

CPV contribution from K⁰ mixing [PDG 2012]: + (-) 0.332 ± 0.006 % when K⁰ (\overline{K}^0) in final state.

Belle has most precise measurement for direct CPV in charm. All channels analyzed by BaBar and Belle. Results consistent with CPV from K⁰ mixing.

Search for CPV in presence of indirect CPV from K⁰ mixing

 $A_{rec}^{D^{\pm}_{(s)} \to K^0_S h^{\pm}}$

$=\frac{N_{rec}^+ - N_{rec}^-}{N_{rec}^+ + N_{rec}^-}$

Reconstructed asymmetry *A_{rec}* **contributions:**

(1)CPV from the decay of the charm meson - what we want to measure

(2)CPV in the K^0 system, depends on the K_{S^0} lifetime [Grossman and Nir, JHEP 4 (2012), 2]

(3)Production asymmetry of the D meson, odd as a function of the D meson polar angle in the center-of-mass. Extract directly by measuring reconstructed asymmetry in intervals of the polar angle.

(4)Detection asymmetry of the π^{\pm} or the K^{\pm}. Corrected from the detection efficiency measured from high-statistics control samples.

(5)Dilution asymmetry from different nuclear cross-sections.

Map of charged particle reconstruction correction

 $^{+} \rightarrow K_{S}^{0} \pi^{+}$

18

Probing for direct CPV with SCS Dalitz plot decays take advantage of final state interactions.

Final state interactions can affect / produce amplitudes of resonances and strong phases.

Important for CP violation studies since small NP CP phases can be enhanced in localized regions of Dalitz plot and differential observables can shed light on the mechanisms at play.

- Model dependent measure asymmetry in a particular resonance. Magnitudes / phases w.r.t. to one resonance, e.g. K*0(892)

HEP Direct CPV Searches in Dalitz plot decays

UNIVERSIDAD TECNICA

Localized in a specific part of the Dalitz plot.

Obtain phase-space integrated asymmetry.

Integrated over the entire phase space.

The two must be decoupled:

As with two-body measurements, phase-space integrated direct CPV measured as function of the production angle.

• A_{rec} has several contributions: A_{FB} , $A_{K,\pi}$, ... additional asymmetries must be accounted for.

Analysis techniques of BaBar and Belle - complementary but different

- Belle uses larger dataset of SCS and CF decays to search for CPV in $D^{\pm} \rightarrow \phi \pi^{\pm}$.
- Belle measures asymmetry difference between the SCS decay $D^{\pm} \rightarrow \phi \pi^{\pm}$ and the CF decay $D_{s}^{\pm} \rightarrow \phi \pi^{\pm}$.

$$\Delta A_{rec} = \frac{N(D^+) - N(D^-)}{N(D^+) + N(D^-)} - \frac{N(D_s^+) - N(D_s^-)}{N(D_s^+) + N(D_s^-)}$$

- BaBar measures phase-space integrated A_{CP} and searches for CPV in localized regions of the Dalitz plot and the resonances.
- BaBar measures asymmetry from efficiency-corrected yields and relies on the reconstruction efficiency determined from phase-space generated Monte Carlo (MC) events, correcting for additional asymmetries not accurately modeled in the MC from the data.
 - Advantage that the systematic uncertainties can be evaluated equally for model-independent, phasespace integrated, and Dalitz plot amplitude analysis and the efficiency is a function of the Dalitz plot.

$$A(\cos(heta_{
m CM}))\equiv rac{N_{D^+}/\epsilon_{D^+}-N_{D^-}/\epsilon_{D^-}}{N_{D^+}/\epsilon_{D^+}+N_{D^-}/\epsilon_{D^-}}$$

Resonance	Mass (MeV)	Width (MeV)
$\bar{K}^{*}(892)^{0}$	895.53 ± 0.17	44.90 ± 0.30
$\phi(1020)$	1019.48 ± 0.01	4.37 ± 0.02
$a_0(1450)$	1441.59 ± 3.77	268.58 ± 5.28
$ar{K}^{*}_{0}(1430)^{0}$	1431.88 ± 5.89	293.62 ± 3.83
$\bar{K}^{*}(1680)^{0}$	1716.88 ± 21.03	319.28 ± 109.07
$f_0(1370)$	1221.59 ± 2.46	281.48 ± 6.6
κ	798.35 ± 1.79	405.25 ± 5.05

χ^2 /ndof = 1.2

Fit masses & widths of several resonances. $f_0(980)$ effective parameterization from $D_s \rightarrow KK\pi$ Several $K\pi$ s-wave parameterizations tested: best fit obtained from $K^*(1430)^0 + \kappa +$ non-resonant.

No evidence of CP violation measured as a function of the center-ofmass polar angle of D⁺ meson.

BaBar studied the asymmetry as a function of the Dalitz plot. No evidence for CP violation found in the Dalitz plot amplitude analysis or with model-independent techniques.

- The current data samples from the B-factories are being used effectively to complete many analyses of mixing and CP violation in Charm decays.
- Hints of CP violation in charm sector -- cannot rule out SM or NP.
- Evidence for mixing approaching 5σ for individual
 B-factory results. All consistent with no CP violation.
- Direct CP Violation in Charm decays not observed at the e⁺e⁻ collider experiments.

Flavor Mixing and CP Violation

• Flavor mixing occurs when flavor eigenstates differ from the mass eigenstates: experimentally observed in neutral K, B_d, B_s, and in the D system at the B factories.

$$\begin{aligned} |D_{1,2}^{0}\rangle &= p|D^{0}\rangle \pm q|\bar{D}^{0}\rangle & \left(\frac{q}{p}\right)^{2} = \frac{M_{12}^{*} - \frac{1}{2}\Gamma_{12}}{M_{12} - \frac{1}{2}\Gamma_{12}}\\ |p|^{2} + |q|^{2} &= 1\\ |A_{f}/\bar{A}_{f}| \neq 1 & \phi_{f} = \arg\left(\frac{q}{p}\frac{\bar{A}_{f}}{A_{f}}\right) \neq 0\\ r_{m} &= |q/p| \neq 1 \end{aligned}$$

BaBar results

Belle results

PRD 83, 071103(R) (2011)

PRD 87, 052012 (2013)

PRL 104, 181602(2010)

PRL 109, 021601 (2012)

JHEP 02 098 (2013)

Two-body $D_{(s)}$ decays with K_s^0 in

final state

Results include SM contribution of indirect CPV from K⁰ mixing

Broad structure over large region of Dalitz plot

- Neural network describes the Dalitz plot efficiency.
- Combined parametric and non-parametric model to describe the background (using the sidebands)
- S-wave dependence near the $\varphi(1020)$ resonance taken from $D_s \rightarrow KK\pi$ analysis [PRD 83, 052001 (2011)]
- Several models tested for $K\pi$ S-wave.
- → Two step unbinned maximum likelihood fit:
 - Assume no CP asymmetry and find the Dalitz plot model which best describes the data (determined from the goodness-of-fit).
 - Allow for CP asymmetry in the dominant resonances.

Kπ S-wave Model

φ₀(s) (deg.)

100

150

0

φ₁(s) (deg.) 20

φ₂(s) (deg.) 0 001

- Isobar Model -- Kappa + $K^*(1430)^0$ + Non-resonant amplitude.
- Model-Independent partial wave MIPWA (E791). [PRD 73, 032004 (2006)]
- K-matrix approach, reduces to $K\pi$ • scattering amplitude from LASS. Parameterization from $D^0 \rightarrow K_S \Pi^+ \Pi^-$ mixing analysis. [PRL 105, 081803 (2010)]

$$T_R = Be^{i\phi_B} \frac{(\cos\phi_B + \cot\delta_B \sin\phi_B)\sqrt{s}}{q(s)\cot\delta_B - iq(s)} + Re^{i\phi_R}e^{i2(\delta_B + \phi_B)} \frac{m_R\Gamma_Rm_R/q_0}{m_R^2 - s - im_R\Gamma(s)}$$
with
$$q(s)\cot\delta_B = \frac{1}{a} + \frac{rq(s)^2}{2}$$
and
$$e^{i2\delta_B} = \frac{q(s)\cot\delta_B + iq(s)}{(s)^2 - s - iq(s)}$$

 $q(s) \cot \delta_B - iq(s)$

UNIVERSIDAD TECNICA

I.I. Bigi hep-ph/0107102

- Assuming CPT invariance, T-violation implies CP violation.
- C_{T} observable is odd under T-reversal $C_{T} \equiv \vec{p}_{K^{+}} \cdot (\vec{p}_{\pi^{+}} \times \vec{p}_{\pi^{-}})$

$$A_{T} \equiv \frac{\Gamma(C_{T} > 0) - \Gamma(C_{T} < 0)}{\Gamma(C_{T} > 0) + \Gamma(C_{T} < 0)}$$

Measured on D^+

•Final-state interactions (FSI) may introduce T-odd asymmetries $A_{T} \neq 0$. •Measuring the T-violating observable removes FSI effects: Measured on D^{*}

$$\mathcal{A}_T \equiv rac{1}{2} \left(A_T - ar{A}_T
ight)$$

