

HADRONIC D MESON DECAYS

Cheng-Wei Chiang

National Central University Academia Sinica National Center for Theoretical Sciences

New Era of Particle Physics

 In past two decades or so, many new physics (NP) models have been proposed to addresses such issues as:

- Most of them are believed to leave detectable imprints in various low-energy flavor physics.
- Lots of high-precision data have been obtained and more to come. Have we really seen any of it?

New Era of Particle Physics

- In past two decades or so, many new physics (NP) models have been proposed to addresses such issues as: trand unificatio
- Most of them are believed to leave detectable imprints in various low-energy flavor physics.

Jark matter phi

- Lots of high-precision data have been obtained and more to come. Have we really seen any of it?
- Probing NP in flavor physics = waiting for Godot?

Energy Frontiers

- LHC experiments have been probing particle physics at unprecedented energy frontier.
 - Up to now, no BSM particle from direct searches yet.
 - Found a SM Higgs-like resonance at ~125 GeV instead.
 m completing the SM

Precision Frontiers

- Flavor physics experiments have been probing particle physics at precision frontier.
- Many FCNC processes of B physics are used to impose stringent constraints on new physics models.
 - disappearing low-energy anomalies such as B_s meson mixing and FBA in $B\!\rightarrow\!K^*\mu\mu$
 - reduced tension between $B \rightarrow \tau v$ and sin2B about $|V_{ub}|$.
 - stronger constraints / bounds from $BR(B_{s,d} \rightarrow \mu^+ \mu^-)$.
 - some lingering problems such as $K\pi$ puzzle and like-sign dimuon asymmetry.
- In general, current data point to contrived NP models if it has to show up at the TeV scale.

What About Charm System?

- Being studied for about 4 decades, a lot of charm data (D meson mixing, decay BR's, A_{CP}'s) have been collected and analyzed (from BABAR, Belle, CLEO-c, BES-III, and LHCb).
 - Consistent with SM expectations?
 - A good place to observe NP?
- Recent direct CPA difference in hadronic D decays
 indicating NP beyond the SM?
 - demanding new understanding of SM?

Peculiarities of Charm Quark

- Resides at an awkward place in mass spectrum
 no suitable effective theory to work with, particularly for hadronic decays
- Too light to grant reliable heavy-quark expansions $\Lambda_{QCD}/m_c\sim 0.3~~{
 m vs}~~\Lambda_{QCD}/m_b\sim 0.1$
- Too heavy to use chiral perturbation theory
- Strong QCD coupling regime
 perturbative QCD calculations expected to fail
- Many resonances around
 monperturbative rescattering effects kick in
- Flavor SU(3) symmetry for decays to light mesons
- Good realm to test various approaches

Dominant Charm Decays

D mesons decay dominantly (~84%) into hadronic final states, 3/4 of which are two-body modes.
 unlike B mesons

Mode	BR
PP	$\sim 10\%$
VP	$\sim 28\%$
VV	$\sim 10\%$
SP	$\sim 4.2\%$
AP	$\sim 10\%$
TP	$\sim 0.3\%$
2-body	$\sim 63\%$
hadronic	$\sim 84\%$
semileptonic	$\sim 16\%$

P: pseudoscalar meson V: vector meson A: axial vector meson T: tensor meson

Two-Body Hadronic Charm Decays

- Cabibbo-favored (CF): involving V_{ud}^{*}V_{cs} ~ 1-λ² ~ 0.95
- Singly Cabibbo-suppressed (SCS): involving $V_{us}^*V_{cs}$ / $V_{ud}^*V_{cd} \sim \lambda \sim 0.22$
- Doubly Cabibbo-suppressed (DCS): involving V_{us}^{*}V_{cd} ~ λ² ~ 0.05

Two-Body Hadronic Charm Decays

- Cabibbo-favored (CF): involving V_{ud}^{*}V_{cs} ~ 1-λ² ~ 0.95
- Singly Cabibbo-suppressed (SCS): involving V_{us}^{*}V_{cs} / V_{ud}^{*}V_{cd} ~ λ ~ 0.22
- Doubly Cabibbo-suppressed (DCS): involving $V_{us}^*V_{cd} \sim \lambda^2 \sim 0.05$

• Only SCS decays can possibly involve diagrams with different CKM phases and thus possibly have CPA's:

 $Amp = V_{cd}^* V_{ud} (trees + penguins) + V_{cs}^* V_{us} (trees + penguins)$

CP Violation in SCS Decays

 CPA's in SCS decay modes are expected only at 10⁻⁴ to 10⁻³ level

$$a_{CP}^{\text{dir}} = \frac{2\text{Im}(V_{cd}^* V_{ud} V_{cs} V_{us}^*)}{|V_{cd}^* V_{ud}|^2} \left| \frac{A_2}{A_1} \right| \sin \delta = 2 \left| \frac{V_{cb}^* V_{ub}}{V_{cd}^* V_{ud}} \right| \sin \gamma \left| \frac{A_2}{A_1} \right| \sin \delta$$
$$\sim 10^{-3} \left| \frac{A_2}{A_1} \right| \sin \delta \qquad (\delta = \text{relative strong phase})$$

new physics, if measured to be sizable

Flavor Diagrams

 Diagrams for 2-body hadronic D meson decays can be classified according to flavor topology into the tree- and loop-types:

Zeppenfeld 1981 Chau and Cheng 1986, 1987, 1991 Savage and Wise 1989 Grinstein and Lebed 1996 Gronau et. al. 1994, 1995, 1995 Cheng and Oh 2011

 $(g) PE, PE_{EW}$

(h) PA, PA_{EW}

(c) P, P_{EW}^C

$CF D \rightarrow PP Decays$

TABLE I. Branching fractions and invariant amplitudes for Cabibbo-favored decays of charmed mesons to two pseudoscalar mesons. Data are taken from [4]. Predictions based on our best-fitted results in (7) are given in the last column.

Meson	Mode	Representation	\mathcal{B}_{exp} (%)	$\mathcal{B}_{\mathrm{fit}}$ (%)
D^0	$K^{-}\pi^{+}$	$V_{cs}^*V_{ud}(T+E)$	3.91 ± 0.08	3.91 ± 0.17
	$ar{K}^0 \pi^0$	$\frac{1}{C}V_{cs}^*V_{ud}(C-E)$	2.38 ± 0.09	2.36 ± 0.08
	$\bar{K}^0 \eta$	$V_{cs}^* V_{ud} \left[\frac{1}{2} (C + E) \cos \phi - E \sin \phi \right]$	0.96 ± 0.06	0.98 ± 0.05
	$ar{K}^0 \eta'$	$V_{cs}^* V_{ud} \left[\frac{\sqrt{2}}{\sqrt{2}} (C + E) \sin \phi + E \cos \phi \right]$	1.90 ± 0.11	1.91 ± 0.09
D^+	$ar{K}^0\pi^+$	$V_{cs}^* V_{ud}(T+C)$	3.07 ± 0.10	3.08 ± 0.36
D_s^+	$ar{K}^0 K^+$	$V_{cs}^*V_{\mu d}(C+A)$	2.98 ± 0.17	2.97 ± 0.32
	$\pi^+\pi^0$	0	< 0.037	0
	$\pi^+\eta$	$V_{cs}^* V_{ud}(\sqrt{2}A\cos\phi - T\sin\phi)$	1.84 ± 0.15	1.82 ± 0.32
	$\pi^+\eta^\prime$	$V_{cs}^* V_{ud}(\sqrt{2}A\sin\phi + T\cos\phi)$	3.95 ± 0.34	3.82 ± 0.36

• η - η ' mixing (with ϕ = 40.4°): KLOE 2009

satisfactory fit

$$\begin{pmatrix} \eta \\ \eta' \end{pmatrix} = \begin{pmatrix} \cos\phi & -\sin\phi \\ \sin\phi & \cos\phi \end{pmatrix} \begin{pmatrix} \eta_q \\ \eta_s \end{pmatrix} \qquad \left[\eta_q = \frac{1}{\sqrt{2}} \left(u\bar{u} + d\bar{d} \right) , \ \eta_s = s\bar{s} \right]$$

Extracted Amplitudes

• The amplitudes extracted from Cabibbo-favored modes in units of 10^{-6} GeV are (X²/dof = 0.65):

CWC, Luo, Rosner 2002, 2003 Wu, Zhong, Zhou 2004 Bhattacharya and Rosner 2008, 2010 Cheng and CWC 2010

 $C = (2.61 \pm 0.08)e^{-i(152 \pm 1)^{\circ}}$ $T = 3.14 \pm 0.06$, $^{+20}_{-33})^{\circ}$

$$E = (1.53^{+0.07}_{-0.08})e^{i(122\pm2)^{\circ}}, \quad A = (0.39^{+0.13}_{-0.09})e^{i(31^{+2}_{-3})}$$

[CKM factors extracted]

 Results are used to predict SCS and DCS decays utilizing the flavor SU(3) symmetry.

Implications

Cheng and CWC 2010

 T and C are almost opposite in phase, and C and E are quite sizable (cf. B decays)
 large final-state interaction effects
 result of rescattering via abundant resonances around D mesons

failure of perturbative approaches

FIG. 1. Contributions to $D^0 \to \overline{K}{}^0 \pi^0$ from the color-allowed weak decay $D^0 \to K^- \pi^+$ followed by a resonantlike rescattering (a) and quark exchange (b). While (a) has the same topology as the *W*-exchange graph, (b) mimics the color-suppressed internal *W*-emission graph.

SCS D \rightarrow PP Decays -- SU(3) Limit

Decay Mode	$\mathcal{B}_{_{\mathrm{SU}(3)}}$	$\mathcal{B}_{_{{ m SU}(3) ext{-breaking}}}$	$\mathcal{B}_{\mathrm{expt}}$
$D^0 \to \pi^+\pi^-$	2.26 ± 0.13		1.400 ± 0.026
$D^0 \to \pi^0 \pi^0$	1.35 ± 0.08	← →	0.80 ± 0.05
$D^0 \to \pi^0 \eta$	0.75 ± 0.05		0.68 ± 0.07
$D^0 ightarrow \pi^0 \eta^\prime$	0.75 ± 0.05		0.89 ± 0.14
$D^0 \to \eta \eta$	1.43 ± 0.09		1.67 ± 0.20
	1.43 ± 0.09		
$D^0 \to \eta \eta'$	1.20 ± 0.10		1.05 ± 0.26
	1.20 ± 0.10		
$D^0 \rightarrow K^+ K^-$	1.89 ± 0.11	← →	3.96 ± 0.08
	1.89 ± 0.11		
$D^0 \to K^0 \overline{K}^0$	0	← →	0.346 ± 0.058
	0		
$D^+ \to \pi^+ \pi^0$	0.88 ± 0.06		1.19 ± 0.06
$D^+ \to \pi^+ \eta$	1.49 ± 0.35		3.53 ± 0.21
$D^+ \to \pi^+ \eta'$	3.77 ± 0.33		4.67 ± 0.29
$D^+ \to K^+ \overline{K}^0$	5.32 ± 0.55		5.66 ± 0.32
$D_s^+ \to \pi^+ K^0$	2.78 ± 0.28		2.42 ± 0.16
$D_s^+ \to \pi^0 K^+$	0.69 ± 0.09		0.62 ± 0.21
$D_s^+ \to K^+ \eta$	0.78 ± 0.08		1.75 ± 0.35
$D_s^+ \to K^+ \eta'$	1.05 ± 0.17		1.8 ± 0.6
		— 4	<u>ι nenσ-vvei ι nia</u>

Cneng-vvei Cniang for FPCP 2013

DCS D \rightarrow PP Decays -- SU(3) Limit

• Predictions and measured data agree well.

Cheng and CWC 2010

TABLE III. Branching fractions and invariant amplitudes for doubly Cabibbo-suppressed decays of charmed mesons to two pseudoscalar mesons. Data are taken from [4]. Predictions based on our best-fitted results in (7) with exact flavor SU(3) symmetry are given in the last column.

Meson	Mode	Representation	\mathcal{B}_{exp} ($ imes 10^{-4}$)	$\mathcal{B}_{ ext{theory}}$ ($ imes$ 10 ⁻⁴)
D^0	$K^+ \pi^-$	$V_{cd}^*V_{us}(T''+E'')$	1.48 ± 0.07	1.12 ± 0.05
	$K^0\pi^0$	$\frac{1}{\sqrt{2}}V_{cd}^*V_{us}(C''-E'')$		0.67 ± 0.02
	$K^0\eta$	$V_{cd}^* V_{us} \left[\frac{1}{\sqrt{2}} (C'' + E'') \cos \phi - E'' \sin \phi \right]$		0.28 ± 0.02
	$K^0\eta'$	$V_{cd}^* V_{us} \left[\frac{\sqrt{2}}{\sqrt{2}} (C'' + E'') \sin \phi + E'' \cos \phi \right]$		0.55 ± 0.03
D^+	$K^0\pi^+$	$V_{cd}^* V_{us}(C'' + A'')$		1.98 ± 0.22
	$K^+ \pi^0$	$\frac{1}{\sqrt{2}} V_{cd}^* V_{us} (T'' - A'')$	1.72 ± 0.19	1.59 ± 0.15
	$K^+ \eta$	$V_{cd}^* V_{\mu s} (\frac{1}{5} (T'' + A'') \cos \phi - A'' \sin \phi)$		0.98 ± 0.04
	$K^+ \eta'$	$V_{cd}^* V_{us} (\frac{4}{\sqrt{2}} (T'' + A'') \sin \phi + A'' \cos \phi)$		0.91 ± 0.17
D_s^+	K^0K^+	$V_{cd}^* V_{us}(T'' + C'')$		0.38 ± 0.04

Problems With K^+K^- and $\pi^+\pi^-$ Modes

• These two modes are closely related and identical under SU(3) limit:

$$A_{\pi^{+}\pi^{-}} = \frac{1}{2} (\lambda_{d} - \lambda_{s}) (T + E + \Delta P)_{\pi\pi} - \frac{1}{2} \lambda_{b} (T + E + \Sigma P)_{\pi\pi}$$

$$\rightarrow \lambda_{d} (T + E) - \lambda_{b} \Sigma P \qquad [SU(3) \text{ limit}]$$

$$A_{K^{+}K^{-}} = \frac{1}{2} (\lambda_{s} - \lambda_{d}) (T + E - \Delta P)_{KK} - \frac{1}{2} \lambda_{b} (T + E + \Sigma P)_{KK}$$

$$\rightarrow \lambda_{s} (T + E) - \lambda_{b} \Sigma P \qquad [SU(3) \text{ limit}]$$

$$\Sigma P = (P + PE + PA)_d + (P + PE + PA)_s$$

$$\Delta P = (P + PE + PA)_d - (P + PE + PA)_s$$

$$\lambda_q = V_{cq}^* V_{uq}$$

quark involved in penguin loop
16 Cheng-Wei Chiang for FPCP 2013

A Long-Standing Puzzle

- D $\rightarrow \pi^+\pi^-$, K⁺K⁻ modes are known to deviate from naive expectations for a long time.
- Empirically, the ratio of their decay rates $\frac{\Gamma(K^+K^-)}{\Gamma(\pi^+\pi^-)}\simeq 2.8$

is noticeably larger than 1 for the SU(3) limit, not to mention that K^+K^- has less phase space than $\pi^+\pi^-$.

• SU(3) breaking in factorizable part $\frac{T(K^+K^-)}{T(\pi^+\pi^-)} \simeq \frac{f_K}{f_\pi} \simeq 1.22 \text{ or } \frac{f_K}{f_\pi} \frac{F_+^{DK}(m_K^2)}{F_+^{D\pi}(m_\pi^2)} \simeq 1.38$ is insufficient to account for data.

Direct CP Asymmetry Difference

• Time-integrated asymmetry to first order in the average decay time <t>:

$$A_{CP}(f) \equiv \frac{\Gamma(D^0 \to f) - \Gamma(\bar{D}^0 \to \bar{f})}{\Gamma(D^0 \to f) + \Gamma(\bar{D}^0 \to \bar{f})}$$
$$\simeq a_{CP}^{\text{dir}}(f) + \frac{\langle t \rangle}{\tau_D} a_{CP}^{\text{ind}}$$

Consider

$$\Delta A_{CP} \equiv A_{CP}(K^+K^-) - A_{CP}(\pi^+\pi^-)$$
$$\simeq a_{CP}^{\text{dir}}(K^+K^-) - a_{CP}^{\text{dir}}(\pi^+\pi^-) + \frac{\Delta \langle t \rangle}{\tau_D} a_{CP}^{\text{ind}}$$

(1) common systematic factors cancel out;
(2) insensitive to indirect CPV;
(3) SM and most NP models predict opposite signs.

ΔA_{CP} for K⁺K⁻ and $\pi^{+}\pi^{-}$ circa 2012

HFAG ICHEP 2012

~30 theory papers followed

Large Penguin Within SM -- I

Brod, Grossman, Kagan, Zupan 2012

- Assume different and large enhancements in d,squark penguin contractions P_{d,s} relative to T.
- Require U-spin breaking in T+E:

 $(T+E)_{\pi\pi} = (T+E)(1+\epsilon_T/2)$ $(T+E)_{KK} = (T+E)(1-\epsilon_T/2)$

with a complex ε_T and $|\varepsilon_T| \in (0,0.3)$.

Large ΣP explains Δa_{CP}^{dir}, while large ΔP explains the large disparity in the rates of K⁺K⁻ and π⁺π⁻.
 M A fit to data shows | (P_d-P_s)/T | ~ 0.5!

Large Penguin Within SM -- II

Bhattacharya, Gronau, Rosner 2012

• Take SU(3) breaking in T by factorization

 $\frac{T_{KK}}{T_{\pi\pi}} = \frac{a_1(KK)}{a_1(\pi\pi)} \frac{f_K}{f_\pi} \frac{F_0^{DK}(m_K^2)}{F_0^{D\pi}(m_\pi^2)} \frac{m_D^2 - m_K^2}{m_D^2 - m_\pi^2} \simeq 1.32$

Assume a smaller ΔP and E_{KK} = E_{ππ}.
 A fit to data shows |(P_d-P_s)/T| ~ 0.15
 requiring a P_b amplitude comparable to T (attributed to "unforeseen QCD effects")

Our Analysis

• Significant SU(3) symmetry breaking in E:

 $A(D \rightarrow K^0 \underline{K}^0) = \lambda_d(E_d + 2PA_d) + \lambda_s(E_s + 2PA_s)$ we vanishing in SU(3) limit, but measured to have a nonzero rate

• Fix E_d and E_s from rates of K⁺K⁻, $\pi^+\pi^-$, $\pi^0\pi^0$, and K⁰<u>K</u>⁰: (I) $E_d = 1.19 e^{i15.0^{\circ}}E$, $E_s = 0.58 e^{-i14.7^{\circ}}E$,

(II) $E_d = 1.19 e^{i15.0^{\circ}} E$, $E_s = 1.62 e^{-i9.8^{\circ}} E$.

- Also SU(3) breaking in T by factorization.
- No attempt is made to fit Δa_{CP}^{dir} though.
- Accumulation of several SU(3) breaking effects leads to apparently large SU(3) violation seen in the rates of K⁺K⁻ and $\pi^+\pi^-$.

Penguin Amplitudes

- Short-distance weak penguin exchange/annihilation diagrams are very small
 IPE/TI ~ 0.04 and IPA/TI~ 0.02
- Large long-distance contribution to PE can possibly arise from $D^0 \rightarrow K^+K^-$ followed by a resonance-like final-state rescattering, in the same fashion as for E

- It is possible to have PE ~ E, just to maximize CPV.
- Use QCDF to estimate other penguin amplitudes.
 megligible ∆P

SCS D \rightarrow PP Decays -- SU(3) Breaking

Decay Mode	$\mathcal{B}_{_{\mathrm{SU}(3)}}$	$\mathcal{B}_{_{{ m SU}(3) ext{-breaking}}}$	$\mathcal{B}_{ ext{expt}}$	
$D^0 \rightarrow \pi^+ \pi^-$	2.26 ± 0.13	1.40 ± 0.11	1.400 ± 0.026	
$D^0 \to \pi^0 \pi^0$	1.35 ± 0.08	0.78 ± 0.06	0.80 ± 0.05	
$D^0 \to \pi^0 \eta$	0.75 ± 0.05	0.83 ± 0.06	0.68 ± 0.07	
$D^0 \to \pi^0 \eta'$	0.75 ± 0.05	1.42 ± 0.08	0.89 ± 0.14	
$D^0 o \eta\eta$	1.43 ± 0.09	1.68 ± 0.09	1.67 ± 0.20	
	1.43 ± 0.09	1.89 ± 0.10		
$D^0 o \eta \eta'$	1.20 ± 0.10	0.68 ± 0.06	1.05 ± 0.26	
	1.20 ± 0.10	2.11 ± 0.20		
$D^0 \to K^+ K^-$	1.89 ± 0.11	3.89 ± 0.16	3.96 ± 0.08	
	1.89 ± 0.11	3.90 ± 0.22		
$D^0 \to K^0 \overline{K}^0$	0	0.346 ± 0.034	0.346 ± 0.058	Cheng and CVVC 2012
	0	0.345 ± 0.034		
$D^+ \to \pi^+ \pi^0$	0.88 ± 0.06	0.96 ± 0.07	1.19 ± 0.06	
$D^+ \to \pi^+ \eta$	1.49 ± 0.35	3.26 ± 0.39	3.53 ± 0.21	
$D^+ \to \pi^+ \eta'$	3.77 ± 0.33	4.70 ± 0.31	4.67 ± 0.29	
$D^+ \to K^+ \overline{K}^0$	5.32 ± 0.55	8.72 ± 0.85	5.66 ± 0.32	
$D_s^+ \to \pi^+ K^0$	2.78 ± 0.28	3.57 ± 0.33	2.42 ± 0.16	
$D_s^+ \to \pi^0 K^+$	0.69 ± 0.09	0.69 ± 0.09	0.62 ± 0.21	
$D_s^+ \to K^+ \eta$	0.78 ± 0.08	0.83 ± 0.08	1.75 ± 0.35	
$D_s^+ \to K^+ \eta'$	1.05 ± 0.17	1.28 ± 0.20	1.8 ± 0.6	

Chang the chiang for FPCP 2013

Our ACP Predictions PQCD results

				\		
Decay Mode	$a_{dir}^{(tree)}$ (this work)	$a_{dir}^{(\text{tree})}[22]$	$a_{dir}^{(tot)}$ (this work)	$a_{dir}^{(tot)}[22]$	Expt.	
$D^0 \to \pi^+\pi^-$	0	0	0.96 ± 0.04	0.74	2.0 ± 2.2	
$D^0 \to \pi^0 \pi^0$	0	0	0.83 ± 0.04	0.26	1 ± 48	
$D^0 \to \pi^0 \eta$	0.82 ± 0.03	-0.29	0.06 ± 0.04	-0.61		
$D^0 \to \pi^0 \eta'$	-0.39 ± 0.02	0.43	0.01 ± 0.02	1.67		
$D^0 ightarrow \eta \eta$	-0.28 ± 0.01	0.29	-0.58 ± 0.02	0.18	Cheng a	and CVVC 2012
	-0.42 ± 0.02	0.29	-0.74 ± 0.02	0.18		
$D^0 o \eta \eta^\prime$	0.49 ± 0.02	-0.30	0.53 ± 0.03	0.97		
	0.38 ± 0.02	-0.30	0.33 ± 0.02	0.97		
$D^0 \to K^+ K^-$	0	0	-0.42 ± 0.01	-0.54	-2.3 ± 1.7	
	0	0	-0.54 ± 0.02	-0.54	J	
$D^0 \to K^0 \overline{K}^0$	-0.73	0.69	-0.67 ± 0.01	0.90		
	-1.73	0.69	-1.90 ± 0.01	0.90		
$D^+ \to \pi^+ \pi^0$	0	0	0	0	29 ± 29	
$D^+ \to \pi^+ \eta$	0.36 ± 0.06	-0.46	-0.78 ± 0.06	0.63	$17.4\pm11.5~^a$	
$D^+ \to \pi^+ \eta'$	-0.20 ± 0.04	0.30	0.34 ± 0.07	1.28	$-1.2\pm11.3~^a$	
$D^+ \to K^+ \overline{K}^0$	-0.08 ± 0.06	-0.08	-0.40 ± 0.04	-0.93	-1.0 ± 5.9	
$D_s^+ \to \pi^+ K^0$	0.08 ± 0.06	-0.01	0.46 ± 0.03	0.87	66 ± 24	
$D_s^+ \to \pi^0 K^+$	0.01 ± 0.11	0.17	0.98 ± 0.10	0.76	266 ± 228	
$D_s^+ \to K^+ \eta$	-0.70 ± 0.05	0.75	-0.61 ± 0.05	0.76	93 ± 152	
$D_s^+ \to K^+ \eta'$	0.35 ± 0.04	-0.48	-0.29 ± 0.12	1.83	60 ± 189	

in units of 10^{-3}

Our ACP Predictions PQCD results

	Decay Mode	$a_{dir}^{(tree)}$ (this work)	$a_{dir}^{(\text{tree})}[22]$	$a_{dir}^{(tot)}$ (this work)	$a_{dir}^{(tot)}[22]$	Expt.	
	$D^0 \to \pi^+\pi^-$	0	0	0.96 ± 0.04	0.74	2.0 ± 2.2	
	$D^0 \to \pi^0 \pi^0$	0	0	0.83 ± 0.04	0.26	1 ± 48	
	$D^0 o \pi^0 \eta$	0.82 ± 0.03	-0.29	0.06 ± 0.04	-0.61		
	$D^0 ightarrow \pi^0 \eta^\prime$	-0.39 ± 0.02	0.43	0.01 ± 0.02	1.67		
	$D^0 o \eta\eta$	-0.28 ± 0.01	0.29	-0.58 ± 0.02	0.18	Cheng a	and CVVC 2012
		-0.42 ± 0.02	0.29	-0.74 ± 0.02	0.18		
	$D^0 o \eta \eta^\prime$	0.49 ± 0.02	-0.30	0.53 ± 0.03	0.97		
		0.38 ± 0.02	-0.30	0.33 ± 0.02	0.97		
	$D^0 \to K^+ K^-$	0	0	-0.42 ± 0.01	-0.54	-2.3 ± 1.7	
		0	0	-0.54 ± 0.02	-0.54	J	
	$D^0 \to K^0 \overline{K}^0$	-0.73	0.69	-0.67 ± 0.01	0.90		
		-1.73	0.69	-1.90 ± 0.01	0.90		
	$D^+ \to \pi^+ \pi^0$	0	0	0	0	29 ± 29	
	5 1 1		$^{-}46$	-0.78 ± 0.06	0.63	$17.4\pm11.5~^a$	
Aacp ^{dir}	= -(0.139)	+0.004)% (30	0.34 ± 0.07	1.28	$-1.2\pm11.3~^a$	
			08	-0.40 ± 0.04	-0.93	-1.0 ± 5.9	
	-(0.151	$\pm 0.004)\%$ (01	0.46 ± 0.03	0.87	66 ± 24	
~3.60	from -(0.	.678±0.147	17	0.98 ± 0.10	0.76	266 ± 228	
			75	-0.61 ± 0.05	0.76	93 ± 152	
	$D_s^+ \to K^+ \eta'$	0.35 ± 0.04	-0.48	-0.29 ± 0.12	1.83	60 ± 189	

in units of 10^{-3}

Our ACP Predictions PQCD results

	Decay Mode	$a_{dir}^{(tree)}$ (this work)	$a_{dir}^{(tree)}[22]$	$a_{dir}^{(tot)}$ (this work)	$a_{dir}^{(\text{tot})}[22]$	Expt.	
	$D^0 \to \pi^+\pi^-$	0	0	0.96 ± 0.04	0.74	2.0 ± 2.2	
	$D^0 \to \pi^0 \pi^0$	0	0	0.83 ± 0.04	0.26	1 ± 48	
	$D^0 ightarrow \pi^0 \eta$	0.82 ± 0.03	-0.29	0.06 ± 0.04	-0.61		
	$D^0 ightarrow \pi^0 \eta^\prime$	-0.39 ± 0.02	0.43	0.01 ± 0.02	1.67		
	$D^0 ightarrow \eta \eta$	-0.28 ± 0.01	0.29	-0.58 ± 0.02	0.18	Cheng ar	
		-0.42 ± 0.02	0.29	-0.74 ± 0.02	0.18		
	$D^0 \to \eta \eta^\prime$	0.49 ± 0.02	-0.30	0.53 ± 0.03	0.97		
		0.38 ± 0.02	-0.30	0.33 ± 0.02	0.97		
	$D^0 \to K^+ K^-$	0	0	-0.42 ± 0.01	-0.54	-2.3 ± 1.7	
		0	0	-0.54 ± 0.02	-0.54		
	$D^0 \to K^0 \overline{K}^0$	-0.73	0.69	-0.67 ± 0.01	0.90		
		-1.73	0.69	-1.90 ± 0.01	0.90		
	$D^+ \to \pi^+ \pi^0$	0	0	0	0	29 ± 29	
			- 46				
Δa_{CP}^{dir}	= -(0.139)	+0.004)% (30	even if	PE~T.	$\Delta a_{CP}^{dir} = $	-0.27%.
	(0.151)		08		or hou	nd in CM	
	-(0.151	±0.004)% (01	an uppe	er bou		,
~3.6σ f	^f rom –(0.	678±0.147	17	still ~2.	.8σ fro	om data	
	`		75				
	$D_s^+ \to K^+ \eta'$	0.35 ± 0.04	-0.48	-0.29 ± 0.12	1.83	60 ± 189	

in units of 10^{-3}

New Physics Interpretations

- Before LHCb result:
 - Extra vector-like quarks, SUSY w/o R-parity, 2HDM, QCD dipole operator from SUSY Grossman, Kagan, Nir 2007
 - Little Higgs with T-parity
- After LHCb result:
 - FCNC Z Giudice, Isidori, Paradisi; Altmannshofer, Primulando, Yu, Yu
 - FCNC Z'; FCNC heavy gluon
 - 2HDM (charged Higgs)
 - non-MFV SUSY Hiller, Hochberg, Nir; Giudice, Isidori, Paradisi
 - Color-sextet scalar (diquark scalar) Altmannshofer et al: Chen et al
 - Color-octet scalar Altmannshofer et al
 - 4G Rozanov and Vysotsky; Feldmann, Nandi, Soni

26

Cheng-Wei Chiang for FPCP 2013

Bigi, Paul, Rechsiegel 2011

Altmannshofer et al

Wang and Zhu; Altmannshofer et al

With Constraints

- Some models are ruled out by indirect CPV in D mixing, ϵ'/ϵ , etc: FCNC Z, FCNC Z', diquark scalar.
- Some others require fine-tuning in parameters: heavy FCNC gluon, 2HDM, color-octet scalar.
- The QCD dipole operator

Grossman, Kagan, Nir 2007 Giudice, Isidori, Paradisi 2012 Hiller, Hochberg, Nir 2012

$$O_{8g} = -\frac{g_s}{8\pi^2} m_c \bar{u} \sigma_{\mu\nu} (1+\gamma_5) G^{\mu\nu} c$$

is least constrained and can be enhanced.

- Example: left-right mixing of first two families in up sector, $(\delta^{u}_{12})_{LR} \sim 10^{-3}$, in SUSY

 \blacksquare usual chiral suppression for D mixing ($|\Delta C| = 2$)

 m_{SUSY}/m_c enhancement for D decays ($|\Delta C| = 1$)

Large Penguin / QCD Dipole

Cheng and CWC 2012

- Both made to fit Δa_{CP}^{dir}
- Large QCD dipole predicts large CPA's for $D^0 \rightarrow \pi^0 \pi^0$, $\pi^0 \eta$, but small ones for $D^0 \rightarrow \pi^0 \eta'$, $D^+ \rightarrow \pi^+ \eta'$, $K^+ \underline{K}^0$, $D_s^+ \rightarrow \pi^+ K^0$, $K^+ \eta'$
- The other way around for the large penguin scenario
- Discernible using more data

TABLE IV. Direct *CP* asymmetries (in units of 10^{-3}) of SCS $D \rightarrow PP$ decays estimated in the scenarios with large penguin contributions and large chromomagnetic dipole operator (c.d.o.). The parameters ΣP and c_{8g}^{NP} are chosen to fit the data of $\Delta a_{CP}^{\text{dir}}$: $\frac{1}{2}\Sigma P = 2.9Te^{i85^{\circ}}$ and $c_{8g}^{\text{NP}} = 0.017e^{i14^{\circ}}$ for Solution I, $\frac{1}{2}\Sigma P = 3.2Te^{i85^{\circ}}$ and $c_{8g}^{\text{NP}} = 0.012e^{i14^{\circ}}$ for Solution II. The number in parentheses is for Solution II of E_d and E_s [Eq. (17)].

Decay mode	Large penguins	Large c.d.o.
$D^0 \rightarrow \pi^+ \pi^-$	3.96 (4.40)	5.18 (3.70)
$D^0 \rightarrow \pi^0 \pi^0$	0.93 (1.01)	8.63 (6.19)
$D^0 \rightarrow \pi^0 \eta$	0.09 (0.03)	-6.12 (-4.15)
$D^0 \rightarrow \pi^0 \eta'$	2.36 (2.67)	-0.44(-0.44)
$D^0 \rightarrow \eta \eta$	-1.79 (-1.64)	-1.63 (-2.00)
$D^0 \rightarrow \eta \eta'$	2.65 (1.49)	-2.30 (-1.08)
$D^0 \rightarrow K^+ K^-$	-2.63(-2.36)	-1.46(-2.88)
$D^+ ightarrow \pi^+ \pi^0$	0 (0)	0 (0)
$D^+ \rightarrow \pi^+ \eta$	-3.24(-3.62)	-5.35 (-3.67)
$D^+ \rightarrow \pi^+ \eta'$	2.97 (3.34)	0.93 (0.59)
$D^+ \rightarrow K^+ \bar{K}^0$	-2.95(-3.28)	0.37 (0.29)
$D_s^+ \rightarrow \pi^+ K^0$	3.29 (3.66)	-0.47 (-0.35)
$D_s^+ \rightarrow \pi^0 K^+$	4.57 (5.08)	4.40 (3.14)
$D_s^+ \to K^+ \eta$	-0.58(-0.57)	1.59 (0.94)
$D_s^+ \rightarrow K^+ \eta'$	-5.16 (-5.79)	1.76 (1.39)

New LHCb data

- Use 1.0 fb⁻¹ of data collected in 2011.
- Include two datasets: prompt (update) and secondary (new as a crosscheck), with little overlap in between.
 Prompt: ΔA_{CP} = -(0.34±0.15±0.10)% Secondary: ΔA_{CP} = +(0.49±0.30±0.14)%

HFAG 2013

x and y Parameters

 Assuming no CPV, D-<u>D</u> mixing can be characterized by two parameters

$$x \equiv \frac{\Delta m}{\Gamma} = \frac{m_+ - m_-}{\Gamma}$$
 and $y \equiv \frac{\Delta \Gamma}{2\Gamma} = \frac{\Gamma_+ - \Gamma_-}{2\Gamma}$

where the subscripts (+,-) correspond to the CP eigenstates

$$|D_{\pm}\rangle = \frac{1}{\sqrt{2}}(|D^0\rangle \pm |\bar{D}^0\rangle)$$

In the SM, the short-distance contributions to these parameters are of order 10⁻⁶ due to GIM and double Cabibbo suppression.
 Cheng 1982; Datta and Kumbhakar 1985
 another good place to look for NP effects?

x and y from Dalitz Analysis

 They are orders of magnitudes larger than SM shortdistance predictions.
 me new physics?

General Properties

- Two approaches:
 - inclusive, depending on heavy-quark expansion;
 - exclusive, summing over all intermediate states.
- In SM, x and y are generated at 2nd order in SU(3) breaking:

 $x, y \sim \sin^2 \theta_C \times [SU(3) \text{ breaking}]^2$

- Inclusive approach generally yields x ≥ y, while exclusive approach tends to have x < y.
- Possible SU(3) breaking:
 - phase space difference alone can produce $y \sim 10^{-2}$
 - amplitude difference, depending on model calculations

Master Formulas for x, y

$$x \approx \frac{m_D}{4\pi} \sum_n \eta_{\rm CKM}(n) \eta_{\rm CP}(n) \cos \delta_n \sqrt{\mathcal{B}(D^0 \to n) \mathcal{B}(D^0 \to \bar{n})} \frac{I(m_1, m_2, \Lambda)}{p_c(n)}$$

$$y \approx \sum_{n} \eta_{\text{CKM}}(n) \eta_{\text{CP}}(n) \cos \delta_n \sqrt{\mathcal{B}(D^0 \to n) \mathcal{B}(D^0 \to \bar{n})}$$
 Falk et al 2002

- δ_n : relative strong phase between A(D⁰ \rightarrow n) and A(D⁰ \rightarrow n).
- $\eta_{CKM} = \pm 1$, depending on # of s and <u>s</u> quarks in final state.
- η_{CP} : CP eignevalue of state n.
- x is smaller than y by about 4π because the rest factor m_D I(m₁,m₂, Λ)/p_c is of order 1 (maximal for the $\pi\pi$ mode and about 2.5).
- Data and predictions based on the flavor symmetry approach are then employed to estimate x and y.

Summary of Experimental Results

Method	$x(\times 10^{-3})$	$y(\times 10^{-3})$	Source
Indirect	$9.8^{+2.4}_{-2.6}$	8.3 ± 1.6	WA 2008
Direct	$1.6 \pm 2.3 \pm 1.2 \pm 0.8$	$5.7 \pm 2.0 \pm 1.3 \pm 0.7$	BABAR 2010
Direct	$8.0 \pm 2.9^{+0.9+1.0}_{-0.7-1.4}$	$3.3 \pm 2.4^{+0.8+0.6}_{-1.2-0.8}$	Belle 2007
Direct	$5.6 \pm 1.9^{+0.3+0.6}_{-0.9-0.9}$	$3.0 \pm 1.5^{+0.4+0.3}_{-0.5-0.6}$	Belle 2012

- BABAR favors x < y, while Belle favors the other way.
- Both of them have results smaller than previous world average from indirect measurements.
- Estimates based on flavor diagram approach give
 x ~ 0.1% and y ~ (0.5-0.7)%, in better agreement with
 the BABAR result.
- No strong indication of new physics with current data.

Summary

- Flavor diagram approach with SU(3) symmetry breaking effects is useful to explain BR's of SCS $D \rightarrow PP$ decays.
- Large final-state rescattering effects and thus failure of purely perturbative approach are seen in data.
- Predictions of CPA's are made within SM, and Δa_{CP}^{dir} is around -0.15%, 3.6σ from 2012 data but only 1.5σ from new world average.
 tension between data and SM predictions is alleviated
- Measurements of other CPA's will help discriminating among different analyses (within and beyond SM).
- Long-distance contributions dominate in the D mixing parameters. Current data do not call for NP.

Thank You!