

Jean Wicht (CERN) On behalf of the LHCb collaboration Including results from ATLAS, CMS and LHCb

FPCP 2013 (Búzios, Brazil) Tuesday 21st May 2013

Outline

- B hadrons
 - Cross-sections in pp collisions
 - b-quark: concentrating on one recent result from ATLAS
 - B: concentrating on results on B+ (ATLAS, CMS, LHCb)
 - b hadronization fractions (LHCb)
 - Spectroscopy: concentrating on B baryons
 - Two recent discoveries:
 - Excited Λ_{b} (LHCb)
 - $-\Xi_{b}$ (CMS)
 - Mass measurements
 - Λ_b production polarization (LHCb)
- B jets
 - Forward-central bb production asymmetry (LHCb)
 - Angular correlations between beauty jets (CMS)

b-hadron cross-section with D*µ (I)

ATLAS: 3 pb⁻¹ @ 7 TeV Nucl Phys B 864 (2012) 341

- Good test of QCD at high energy
 - ATLAS&CMS: b-quark production is often background for Higgs/SUSY searches
 - LHCb: how many B mesons will we get?
- Partial reconstruction of any b-hadron: $D*\mu$ with $D*\rightarrow D^0\pi$ and $D^0\rightarrow K\pi$

- Candidates first identified as opposite sign $D^*\mu$ excess in the $D^*\Delta M$
 - Signal then extracted from $M(D*\mu)$

b-hadron cross-section with $D^*\mu$ (II) ATLAS: 3 pb⁻¹@ 7 TeV Nucl Phys B 864 (2012) 341

- Cross-section measured in bins of p_T and η
- Unfolded distributions: correct p_T and η distributions to account for the not reconstructed particles kinematics, ie X from pp→H_bX

- Decent overall agreement but hint of underestimation by NLO QCD predictions
- Extrapolated to full phase-space:

 $\begin{array}{l} \mathrm{ATLAS}: \sigma(\mathrm{pp} \rightarrow \mathrm{H_bX})[\mu\mathrm{b}] = 360 \pm 9 \; (\mathrm{stat}) \pm 34 \; (\mathrm{syst}) \pm 25 \; (\mathrm{BR}) \pm 12 \; (\mathrm{lumi}) \pm 77 \; (\mathrm{ext\&acc}) \\ \mathrm{LHCb}: \sigma(\mathrm{pp} \rightarrow \mathrm{H_bX})[\mu\mathrm{b}] = 284 \pm 20 \; (\mathrm{stat}) \pm 49 \; (\mathrm{syst}) \\ \\ \textbf{Good agreement with LHCb} \\ \begin{array}{l} \text{LHCb: 15 nb^{-1} @ 7 TeV} \\ \text{EHCb: 15 nb^{-1} @ 7 TeV} \end{array} \end{array}$

PLB 694 (2010) 209

CMS also measured b cross-section, but did not extrapolate

CMS: 28 pb⁻¹ @ 7 TeV JHEP 1206 (2012) 110

B-hadron production: f_s/f_d (I)

- LHCb wants to measure the f_{α} hadronization fractions • to use the B⁺/B⁰ BF measured by the B-factories as calibration: eq $B_s \rightarrow \mu\mu$
- f_s/f_d can be measured from the BF ratio: •

$$\frac{\mathcal{B}(B^0 \to D^- K^+)}{\mathcal{B}(B^0_s \to D^-_s \pi^+)}$$

which can be theoretically "cleanly" calculated

Fleischer, Serra and Tuning, PRD82 (2010) 034038

Relevant signals with 1 fb⁻¹:

B-hadron production: f_s/f_d (II)

Also, f_{Λ} was measured with respect to $f_{u} + f_{d}$

 $\frac{f_{\Lambda_b^0}}{f_u + f_d} = (0.404 \pm 0.017 \text{ (stat)} \pm 0.027 \text{ (syst)} \pm 0.105 \text{ (Br)}) \qquad \text{LHCb: 3 pb^{-1} @ 7 TeV} \\ \times \left[1 - (0.031 \pm 0.004 \text{ (stat)} \pm 0.003 \text{ (syst)}) \times p_T \text{ (GeV)}\right] \\ \text{Again, dependence on } p_{\tau} \text{ was found, no on } \eta$

Assuming unitarity and $f_u = f_d$: $f_u = f_d = ~33\%$, $f_s = ~8\%$ and $f_A = ~27\%$

- B hadrons
 - Cross-sections in pp collisions
 - b-quark: concentrating on one recent result from ATLAS
 - B: concentrating on results on B+ (ATLAS, CMS, LHCb)
 - b hadronization fractions (LHCb)
 - Spectroscopy: concentrating on B baryons
 - Two recent discoveries:
 - Excited Λ_b (LHCb)
 - $-\Xi_{b}$ (CMS)
 - Mass measurements
 - $\Lambda_{\rm b}$ production polarization (LHCb)
- B jets
 - Forward-central bb production asymmetry (LHCb)
 - Angular correlations between beauty jets (CMS)

B-baryons spectroscopy (I)

- Test of the different QCD theories: HQET, perturbative, lattice, ...
- Two recent discoveries:
- Observation of Ξ_b*
 CMS: 5.3 fb⁻¹ @ 7 TeV PRL 108 (2012) 252002
 - Using ~110 $\Xi_b \rightarrow J/\psi \Xi$, look at $\Xi_b \pi$

- One narrow resonance (Γ=2.1±1.7 MeV):
 - 5945.0±0.7(stat)±0.3(syst)±2.7(PDG) MeV (6.9σ)
- Assumed to be the JP=3/2+ companion of $\Xi_{\rm b}$

B-baryons spectroscopy (II)

Excited Λ_b baryons

LHCb: 1.0 fb⁻¹ @ 7 TeV PRL 109 (2012) 172003

- Using large and clean sample of
 70k Λ_b →Λ_cπ decays, look at Λ_bππ
- Two narrow resonance (Γ<1 MeV):
 - 5911.97±0.12±0.66 MeV (5.2σ)
 - 5919.77±0.08±0.66 MeV (10.2σ)
- Assumed to be orbitally excited Λ_{b}

J. Wicht: b production, both as hadrons and jets

 $M(\pi\pi)$ of the 2nd peak consistent with phasespace decay

B-baryons spectroscopy (II)

Other B-baryons mass measurements, LHCb is the front-runner

- B hadrons
 - Cross-sections in pp collisions
 - b-quark: concentrating on one recent result from ATLAS
 - B: concentrating on results on B+ (ATLAS, CMS, LHCb)
 - b hadronization fractions (LHCb)
 - Spectroscopy: concentrating on B baryons
 - Two recent discoveries:
 - Excited Λ_{b} (LHCb)
 - $-\Xi_{b}$ (CMS)
 - Mass measurements
 - Λ_b production polarization (LHCb)
- B jets
 - Forward-central bb production asymmetry (LHCb)
 - Angular correlations between beauty jets (CMS)

$\Lambda_{\rm b}$ production polarization (I)

- Λ_b longitudinal polarization vanishes (parity conservation of QCD) but transverse polarization could be as large as 20% Ajaltouni, Conte, Leitner, PLB 614 (2005) 165
 - Measured in e-e+→Z⁰→bb (at LEP) using semi-leptonic decays but not yet at any hadron collider
- Angular analysis of $\Lambda_b \rightarrow J/\psi(\rightarrow \mu\mu)\Lambda(\rightarrow p\pi)$
 - Allows to measure the polarization together with the four decay helicity amplitudes: $\mathcal{M}_{+1/2,0}$, $\mathcal{M}_{-1/2,-1}$, $\mathcal{M}_{-1/2,+1}$

 $\begin{array}{l} \theta: \mbox{ polar angle of } p_{\Lambda} \mbox{ in } \Lambda_b \mbox{ rest-frame wrt } n = p_{\Lambda b0} x p_{beam} \\ \theta_1: \mbox{ polar angles of } p_p \mbox{ in } \Lambda \mbox{ rest-frame} \\ \theta_2: \mbox{ polar angles of } p_\mu \mbox{ in } J/\psi \mbox{ rest-frame} \\ \varphi_1 \mbox{ and } \varphi_2: \mbox{ the azimuthal angles are integrated out} \end{array}$

Four parameters to be measured simultaneously: polarization and three parameters describing the amplitudes:

$$\alpha_{b} = |\mathcal{M}_{+1/2,0}| - |\mathcal{M}_{-1/2,0}| + |\mathcal{M}_{-1/2,-1}| - |\mathcal{M}_{+1/2,+1}|$$
$$r_{0} = |\mathcal{M}_{+1/2,0}| + |\mathcal{M}_{-1/2,0}|$$
$$r_{1} = |\mathcal{M}_{+1/2,0}| - |\mathcal{M}_{-1/2,0}|$$

 $\alpha_{_{b}}$: P-violating asymmetry parameter of the $\Lambda_{_{b}} \rightarrow J/\psi \Lambda$ decay

$\Lambda_{\rm b}$ production polarization (II)

Most "interesting" distribution: $\cos \theta$ Flatness indicates no polarization

$\Lambda_{\rm b}$ production polarization (III)

Results

 $P_b = 0.05 \pm 0.07 \text{ (stat)} \pm 0.02 \text{ (syst)}$ $\alpha_b = 0.05 \pm 0.17 \text{ (stat)} \pm 0.07 \text{ (syst)}$ $r_0 = 0.58 \pm 0.02 \text{ (stat)} \pm 0.01 \text{ (syst)}$ $r_1 = -0.56 \pm 0.10 \text{ (stat)} \pm 0.05 \text{ (syst)}$

- P_b: first measurement in pp collisions
 - cannot exclude O(10%) value Hiller, Knecht, Legger, Schietinger, PLB 649 (2007) 152
 - but disfavors 20% at the level of 2.7σ Ajaltouni, Conte, Leitner, PLB 614 (2005) 165
- α_b: first measurement
 - In agreement with most predictions (-21% to -10%) but incompatible at 5.8σ with the HQET prediction

Method	Value	Reference
Factorization	-0.1	Cheng, PRD 56 (1997) 2799
Factorization	-0.18	Fayyazuddin and Riazuddin, PRD 58 (1998) 014016
Covariant oscillator quark model	-0.21	Mohanta et al., Prog.Theor.Phys $101 (1999) 959$
Perturbative QCD	-0.17 to -0.14	Chou, Shih, Lee, PRD 65 (2002) 074030
Factorization (HQET)	0.78	Ajaltouni, Conte, Leitner, PLB 614 (2005) 165
Light front quark model	-0.20	Wei, Ke, Li, PRD 80 (2009) 094016

J. Wicht: b production, both as hadrons and jets

LHCb: 1.0 fb⁻¹ @ 7 TeV arXiv:1302.5578

Helicity amplitudes parametrization

$$\alpha_{b} = |\mathcal{M}_{+1/2,0}| - |\mathcal{M}_{-1/2,0}| + |\mathcal{M}_{-1/2,-1}| - |\mathcal{M}_{+1/2,+1}|$$
$$r_{0} = |\mathcal{M}_{+1/2,0}| + |\mathcal{M}_{-1/2,0}|$$
$$r_{1} = |\mathcal{M}_{+1/2,0}| - |\mathcal{M}_{-1/2,0}|$$

- B hadrons
 - Cross-sections in pp collisions
 - b-quark: concentrating on one recent result from ATLAS
 - B: concentrating on results on B+ (ATLAS, CMS, LHCb)
 - b hadronization fractions (LHCb)
 - Spectroscopy: concentrating on B baryons
 - Two recent discoveries:
 - Excited Λ_{b} (LHCb)
 - $-\Xi_{b}$ (CMS)
 - Mass measurements
 - Λ_b production polarization (LHCb)
- B jets
 - Forward-central bb production asymmetry (LHCb)
 - Angular correlations between beauty jets (CMS)

Forward-central bb asymmetry (I)

 tt production asymmetry at Tevatron: pp collisions allow to distinguish forward-backward production

$$A_{\rm FB}^{t\bar{t}} = \frac{N_{\Delta y>0} - N_{\Delta y<0}}{N_{\Delta y>0} + N_{\Delta y<0}} \qquad \Delta y = y_t - y_{\bar{t}}$$

• At LHC: use forward-central asymmetry

$$A_{\rm FB}^{b\bar{b}} = \frac{N_{\Delta y>0} - N_{\Delta y<0}}{N_{\Delta y>0} + N_{\Delta y<0}} \qquad \Delta y = |y_b| - |y_{\bar{b}}|$$

- Still provides useful constraints

Kawahala, Krohn, Strassler, arXiv:1108:3301

- Selection
 - Two high-p_T (>15 GeV) back-to-back ($\Delta \phi$ >2.5) b-tagged jets from the same primary pp vertex
 - b-tagging: only consider jets whose hardest displaced track is identified as a muon (muon charge identifies b quark flavor)
 - Calibrated using data: tagging purity compared with simulation
 - one b-quark reconstructed as a B+ meson (J/ ψ K,D π)
 - doubly-tagged sample

LHCb: 1 fb⁻¹ @ 7 TeV LHCb-CONF-2013-001

Forward-central bb asymmetry (II)

LHCb: 1 fb⁻¹ @ 7 TeV LHCb-CONF-2013-001

- Systematic: mainly due to flavor tagging (can be reduced with more data)
- Result in agreement in SM
- Would like to measure for $M_{b\overline{b}} > 2m_t$, but need more data

Beauty di-jet angular correlation (I)

CMS: 3 pb⁻¹ @ 7 TeV BPH-10-019

- Studying the hadroproduction of beauty quark pairs allows for a test pQCD
 - At lowest order, b and \overline{b} quarks emitted back to back
 - At higher order, subprocesses with additional emitted gluons give rise to different topologies in the final state
 - Angular correlations sensitive to these subprocesses
- Hadroproduction of beauty di-jet expected to be a dominant background for many BSM processes
- Selection
 - B-hadrons have large semileptonic BR \rightarrow Use of low-p_T single-muon trigger
 - Allows for a larger probe of beauty di-jet phase space than jet triggers
 - Measurements of the differential cross sections with respect to $\Delta \varphi$ and ΔR (angular separation)

Beauty di-jet angular correlation (II)

CMS Preliminary, vs = 7 TeV, L = 3 pb⁻¹ CMS Preliminary, $\sqrt{s} = 7$ TeV, L = 3 pb⁻¹ 10^b (qd (qd FITTE TELEVISION FOR THE FOR T Muon: p_ > 8 GeV, |η| < 2.1 -Muon: p_ > 8 GeV, |η| < 2.1 8츃 Jet: p > 30 GeV, |n| < 2.4, ∆R > 0.6 <mark>상R</mark> Jet: p > 30 GeV, m < 2.4 10 104 10 10 10^{2} 10 Data (stat. @ syst.) Data (stat. 🕀 syst.) MADGRAPH (stat.) MADGRAPH (stat.) 0.5 1 1.5 2 2.5 3 3.5 1.5 2.5 4.5 -5 ΔR CMS Preliminary, √s = 7 TeV, L = 3 pb⁻¹ CMS Preliminary, √s = 7 TeV, L = 3 pb⁻¹ Data/Theory CASCADE (stat. @ syst. @ the ASCADE (stat. @ syst. @ theor Data/The Muon: p_ > 8 GeV, [ŋ] < 2.1 Muon: p_ > 8 GeV, [ŋ] < 2.1 Jet: p > 30 GeV, |η| < 2.4, ΔR > 0.6 Jet: p > 30 GeV, [1] < 2.4 3 1.5 2 2.5 CMS Preliminary, $\sqrt{s} = 7$ TeV, L = 3 pb CMS Preliminary, $\sqrt{s} = 7$ TeV, L = 3 pb² 2.0 2.0 Data/Theory Data/Theory MADCRAPH (stat @ sys 1.5 1.5 SSISS PYTHIA (stat. @ syst.) PYTHIA (stat. 🕀 syst.) 1.0 0.5 0.5 Muon: p, > 8 GeV, |η| < 2.1 luon: p_ > 8 GeV, |η| < 2.1 Jet: p > 30 GeV, |η| < 2.4, ΔR > 0.6 Jet: p > 30 GeV, [η] < 2.4 0.0 0.0 3

Also found to be in good agreement with previous study: JHEP 1103 (2011) 136

J. Wicht: b production, both as hadrons and jets

• Data compared to generators

	Total cross-section [nb]
Data	$12.2 \pm 0.2 \text{ (stat)}^{+1.6}_{-1.2} \text{ (syst)}$
PYTHIA	$13.18 \pm 0.02 \text{ (stat)}$
MADGRAPH	$17.1 \pm 0.1 \text{ (stat)}$
CASCADE	$9.48 \pm 0.04 \text{ (stat)}^{+1.93}_{-2.65} \text{ (syst)}$

- All need tuning
 - MADGRAPH: best description of the shape in the low angular region but overestimates total σ
 - **CASCADE**: region in disagreement in both ΔR and $\Delta \phi$ and underestimates total σ
 - **PYTHIA**: disagreement in low $\Delta \phi$ region but closer to total σ

PYTHIA: http://home.thep.lu.se/~torbjorn/Pythia.html MADGRAPH: http://madgraph.phys.ucl.ac.be/ CASCADE: https://cascade.hepforge.org/

CMS: 3 pb⁻¹ @ 7 TeV

BPH-10-019

Summary

- Many beautiful results presented:
 - B hadrons
 - Cross-sections in pp collisions
 - b-quark: concentrating on one recent result from ATLAS
 - B: concentrating on results on B+ (ATLAS, CMS, LHCb)
 - b hadronization fractions (LHCb)
 - Spectroscopy: concentrating on B baryons
 - Two recent discoveries:
 - Excited Λ_{b} (LHCb)
 - Ξ_b (CMS)
 - Mass measurements
 - $\Lambda_{\rm b}$ production polarization (LHCb)
 - Bjets
 - Forward-central bb production asymmetry (LHCb)
 - Angular correlations between beauty jets (CMS)
- LHC first run data not yet fully analyzed: more to come!

Backups

Excited B mesons (I)

Total angular momentum of B_s: •

LHCb: 1.0 fb⁻¹ @ 7 TeV PRL 110 (2013) 151803

- CDF observed two narrow peaks in B+K- mass ulletspectrum: B_{s2}^* and feed-down of $B_{s1} \rightarrow B^{*+}K^-$
- D0 confirmed only the first one ullet

J. Wicht: b production, both as hadrons and jets

80

20

100

M(B⁺K⁻) - M(B⁺) - M(K⁻) (MeV/c²)

Excited B_s mesons (II)

Study of orbitally excited B_s* mesons decaying to B+(*)K-

• Structure seen around $\Delta M \sim 20$ MeV, identified as $B_{s2}^* \rightarrow B^{*+}K^-$

Excited B_s mesons (III)

• We measure

 $m(B^{*+}) = 5324.26 \pm 0.30 \text{ (stat)} \pm 0.23 \text{ (syst)} \pm 0.17 \text{ (B}^{+} \text{ mass)}$ $m(B_{s1}) = 5828.40 \pm 0.04 \text{ (stat)} \pm 0.04 \text{ (syst)} \pm 0.41 \text{ (B}^{*+} \text{ mass)}$ $m(B_{s2}^{*}) = 5839.99 \pm 0.05 \text{ (stat)} \pm 0.11 \text{ (syst)} \pm 0.17 \text{ (B}^{+} \text{ mass)}$ $\Gamma(B_{s2}^{*}) = 1.56 \pm 0.13 \text{ (stat)} \pm 0.47 \text{ (syst)}$

- Most precise mass measurements of B_{s1} , B_{s2}^* and B^{*+}
- First observation of B_{s2^*} (8 σ) and measurement of its natural width
 - The B*+K- final state and width favors JP=2+, as expected
- Confirmation of B_{s1} state which was observed by CDF but not by D0

Forward-central bb asymmetry (II)

- Jet energy correction
 - Particles out of acceptance: 20-30%
 - Missing v's, track multiplicity: 10-20%
- Jet E resolution: 15-20%
- Flavor tagging: central part of the analysis
 - Purity: estimated in MC (73±2)%
 - Source of impurity: B oscillations, muons from charm decays, muon misID
 - Cross-check with data
 - Using fully reconstructed B⁺ decays (J/ψK,Dπ) while the other b-quark is reconstructed in a jet
 - Agreement: purity (71.5±4.0)%
 - Using the doubly-tagged sample
 - b-hadron lifetime estimated using jet energy and flight distance
 - Agreement with simulation
 - Also in agreement: (70.7±0.4)%

J. Wicht: b production, both as hadrons and jets

LHCb: 1.0 fb⁻¹ @ 7 TeV LHCb-CONF-2013-001

Beauty di-jet angular correlation (III)

- beauty di-jet signal in data determined by bin-by-bin purity correction to selected events
 - fractional flavor content of the di-jet extracted from a system of 4 equations solved with pseudoexperiments and fitting the resulting distributions
 - overall signal purity from data: 0.933±0.017(stat)

