Light flavor at e^+e^- colliders: Impact of hadronic cross sections on $g_\mu - 2$

Andreas Hafner (hafner@slac.stanford.edu)

Mainz University

On behalf of the BABAR Collaboration

FPCP May 23, 2013

Institut für Kernphysik

Outline

- **1** Motivation: muon-anomaly $(g-2)_{\mu}$
- Initial State Radiation (ISR) analyses at BABAR
- Status of Hadronic Cross Section Measurements • $e^+e^- \rightarrow p\bar{p}$ • $e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^$ $e^+e^- \rightarrow K^+K^-$

gyromagnetic ratio:
$$g$$

 $\vec{\mu} = g \frac{e\hbar}{2mc} \cdot \vec{S}$
spin $\frac{1}{2} \rightarrow$ Dirac theory: $g = 2$
QFT: $g \neq 2$

gyromagnetic ratio: g

$$\vec{\mu} = g \frac{e\hbar}{2mc} \cdot \vec{S}$$

spin $\frac{1}{2} \rightarrow$ Dirac theory: $g = 2$
QFT: $g \neq 2$

muon anomaly:
$$a_{\mu} = (g-2)_{\mu}/2$$

 $a_{\mu}^{\text{theory}} = a_{\mu}^{\text{QED}} + a_{\mu}^{\text{weak}} + a_{\mu}^{\text{had}}$

BNL E821 11659208.9 ±6.4

Brookhaven National Laboratory (BNL) [G.W. Bennett *et al.*, PRD**73**, 072003 (2006)]

Andreas Hafner (Mainz University)

PEP-II and the BABAR detector at SLAC

- asymmetric e^+e^- -collider: 9 GeV (e^-) and 3.1 GeV (e^+)
- $\sqrt{s} = 10.58 \,\text{GeV} \Rightarrow \Upsilon(4S)$ \Rightarrow above $B\overline{B}$ -threshold

- main purpose: B-physics
- multi purpose detector
- data taken from 1999 2008
- integrated luminosity: 531 fb^{-1} on $\Upsilon(4S)$: 454 fb^{-1} $\approx 600 \cdot 10^6 B\overline{B}$ -pairs

ISR at BABAR

Initial State Radiation (ISR) events at BABAR

ISR selection

- Detected high energy photon: E_γ > 3 GeV
 → defines E_{CM} & provides strong background rejection
- Event topology: γ_{ISR} back-to-back to hadrons \rightarrow high acceptance
- Kinematic fit including γ_{ISR}
 - \rightarrow very good energy resolution (4 15 ${\rm MeV})$
- e^+e^- -boost into the laboratory reference frame \rightarrow high efficiency at production threshold of hadronic system
- $\bullet~$ Continuous measurement from threshold to ${\sim}4.5\,{\rm GeV}$
 - ightarrow provides common, consistent systematic uncertainties

ISR analyses at BABAR

published

 $e^+e^- \rightarrow \pi^+\pi^-$ PRD 86 (2012) 032013, PRL 103 (2009) 231801 $e^+e^- \rightarrow \phi f_0(980)$ PRD 74 (2006) 091103. PRD 76 (2007) 012008 $e^+e^- \rightarrow \pi^+\pi^-\pi^0$ PRD 70 (2004) 072004 $e^+e^- \rightarrow K^+K^-n, K^+K^-\pi^0, K_s^0K^{\pm}\pi^{\mp}$ PRD 77 (2008) 092002, PRD 71 (2005) 052001 $e^+e^- \rightarrow 2(\pi^+\pi^-)$ PRD 85 (2012) 112009, PRD 76 (2007) 012008 $e^+e^- \rightarrow K^+K^-\pi^0\pi^0, K^+K^-\pi^+\pi^-, 2(K^+K^-)$ PRD 86 (2012) 012008, PRD 76 (2007) 012008 $e^+e^- \rightarrow 2(\pi^+\pi^-)\pi^0, 2(\pi^+\pi^-)n, K^+K^-\pi^+\pi^-\pi^0, K^+K^-\pi^+\pi^-n$ PRD 76 (2007) 092005 $e^+e^- \rightarrow 3(\pi^+\pi^-), 2(\pi^+\pi^-\pi^0), 2(\pi^+\pi^-)K^+K^-$ PRD 73 (2006) 052003 $e^+e^-
ightarrow par{p}$ PRD 87 (2013) 092005, PRD 73 (2006) 012005 $e^+e^- \rightarrow A\bar{A}, A\bar{\Sigma}^0, \Sigma^0\bar{\Sigma}^0$ PRD 76 (2007) 092006 $e^+e^- \rightarrow c\bar{c} \rightarrow \dots$. . .

about to be submitted for publication to PRD $e^+e^- \rightarrow K^+K^-$

ongoing analyses

$$e^+e^- o K^0_{s} K^0_{L}, \pi^+\pi^-\pi^0\pi^0, K^0_{s} K^\pm\pi^\mp\pi^0/\eta$$

$$e^+e^- o par p$$

- Based on 469 fb⁻¹: PRD 87 (2013) 092005
- Update of PRD 73 (2006) 012005 based on $232 \, {\rm fb}^{-1}$
- Efficiency obtained from simulation [Kühn et al., EPJC 18 (2001),497]
- Measure Cross Section σ
- Extract effective form factor:

$$\sigma=rac{4\pilpha^2eta C}{3m_{
hoar p}^2}|FF|^2$$
, $|FF|=\sqrt{|G_{M}|^2+rac{1}{2 au}|G_{E}|^2}$

• Measure the ratio $|G_E/G_M|$ from angular distributions

$$rac{d\sigma}{dcos heta} \sim (1+cos^2 heta) + au|rac{G_E}{G_M}|^2 sin^2 heta$$

Recent results e⁺

 $e^- \rightarrow p\bar{p}$

Form factor in comparison to other experiments

- Steep rise at threshold seen by PS170 confirmed → tail of a resonance below threshold?
- FF exhibits sharp drops at $M_{p\bar{p}} = 2.2 \text{ GeV}$ and 3 GeV
- Good fit to pQCD prediction: Brodsky-Lepage [PRL 43 (1979) 545]: $FF \sim \frac{\alpha_S^2(M_{p\bar{p}})}{M_{p\bar{p}}^4} (M_{p\bar{p}} > 3 \,\text{GeV}/c^2)$

Time-like $|G_E/G_M|$ measurements

BABAR measurement:

- Angular distributions from threshold up to 3 GeV
- Observe maximum at $M_{p\bar{p}} \approx 2 \, {
 m GeV}/c^2$
- Inconsistent with PS170 measurement at LEAR
- ISR method → weak angular dependence of detection efficiency

Contributions of Exclusive Final States to $g_{\mu}-2$

Contributions of different energy regions to the dispersion integral

 $ightarrow E < 1 \, {
m GeV}$ region dominates $ightarrow \pi^+\pi^-$ channel needed!

$\pi^+\pi^-$ Cross Section

- ρ peak
- $\rho \omega$ interference
- Dip at 1.6 GeV: excited ρ states
- Dip at 2.2 GeV
- Contribution to a_{μ}^{had} : 75%!

Systematic Uncertainties

BABAR:0.5%CMD-2:0.8%SND:1.5%KLOE:0.8%

$\pi^+\pi^-$ Cross Section

- KLOE and BABAR dominate the world average
- \bullet Uncertainty of both measurements smaller than 1%
- $\bullet\,$ Systematic difference, especially above ρ peak
- Difference \rightarrow relatively large uncertainty for a_{μ}^{had}

$\pi^+\pi^-$ Cross Section

- KLOE and BABAR dominate the world average
- Uncertainty of both measurements smaller than 1%
- Systematic difference, especially above ρ peak
- Difference \rightarrow relatively large uncertainty for $a_{\prime\prime}^{\rm had}$

Contributions of Exclusive Final States

Contributions of different energy regions to the dispersion integral

Precise measurements $1 \, \text{GeV} < E < 2 \, \text{GeV}$ needed!

⇒ High multiplicity channels! Why new analyses?

- Improve Statistics
- Improve Systematics
- Use existing data for bkg subtraction

 $e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-$

Phys. Rev. D85, 112009 (2012), based on 454 fb⁻¹

supersedes our previous publication, based on 89 fb⁻¹ of the data: Phys. Rev. D**71**, 052001 (2005). Recent results

 $e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-$

Internal structure in various E_{CM} energy slices

First column (4 entries/event):

 $a_1(1260)$

Recent results

 $e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi$

Internal structure in various E_{CM} energy slices

First column (4 entries/event): a₁(1260)

Second column (4 entries/event):

strong ρ^0 contribution e.g. for $M_{4\pi} > 1.4 \text{ GeV}/c^2$: 1/4th of entries in ρ^0 peak $\rho^0 \rho^0$ is forbidden $\rightarrow \rho^0$ in each event! Recent results

 $^+e^- \rightarrow \pi^+\pi^-\pi^+\pi$

Internal structure in various E_{CM} energy slices

Andreas Hafner (Mainz University)

ISR at BABAR

FPCP 2013 15 / 24

Cross section for $e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-$

 $e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi$

Cross section for $e^+e^- \rightarrow \pi^+\pi^-\pi^+\pi^-$

- < 1.4 GeV: agreement with previous BABAR results, SND and CMD-2 data
- $\bullet > 1.4 \, \mathrm{GeV}$: highest precision (DM2, 20%)

 $e^+e^- \rightarrow K^+K^-$

PRELIMINARY

ightarrow about to be submitted to PRD, based on 232 fb $^{-1}$

- Efficiency obtained from simulation [Kühn et al., EPJC 18 (2001),497]
 - \rightarrow data/MC corrections of utmost importance: trigger, tracking, K-ID and mis-ID
- Unfolding bkg-subtracted and data/MC corrected mass spectrum
- PHOKHARA [Czyż et al., EPJC35 (2004) 527; EPJC39 (2005), 411]
 - \rightarrow Geometrical acceptance
 - $\rightarrow 2^{nd}$ order ISR corrections
- ISR effective luminosity from $\mu\mu\gamma(\gamma)$: KK/ $\mu\mu$ ratio

Cross section $\sigma(e^+e^- \rightarrow K^+K^-)$

A phenomenological fit to the form factor

Comparison to other experiments

ISR at BABA

The Φ parameters

 m_{Φ} and Γ_{Φ} obtained from the fit of the form factor

 $\begin{array}{l} \text{BABAR} \\ m_{\Phi} = 1019.51 \pm 0.02 \pm 0.05_{sys} \, \mathrm{MeV} \\ \Gamma_{\Phi} = 4.29 \pm 0.04 \pm 0.06_{sys} \, \mathrm{MeV} \end{array} \begin{array}{l} \text{PDG} \\ m_{\Phi} = 1019.455 \pm 0.020 \, \mathrm{MeV} \\ \Gamma_{\Phi} = 4.26 \pm 0.04 \, \mathrm{MeV} \end{array}$

ightarrow good agreement

From integrated Φ peak: $\Gamma_{\Phi}^{ee} \times \mathcal{B}(\Phi \to K^+ K^-) = \frac{\alpha^2 \beta^3(s, m_K)}{324} \frac{m_{\Phi}^2}{\Gamma_{\Phi}} a_{\Phi}^2 C_{FS}$

BABAR:

 $\Gamma_{\Phi}^{ee} \times \mathcal{B}(\Phi \to K^+ K^-) = 0.6344 \pm 0.0059_{exp} \pm 0.0028_{fit} \pm 0.0015_{cal} \text{ keV}(1.1\%)$ CMD2:

 $\Gamma^{ee}_{\Phi} imes \mathcal{B}(\Phi
ightarrow K^+ K^-) = 0.605 \pm 0.002 \pm 0.013 \, \mathrm{keV}(2.1\%)$

Charged kaon form factor at large Q^2

Predictions based on QCD in asymptotic regime (Chernyak, Brodsky-Lepage, Farrar-Jackson)

- Power law: F_K ~ α_S(Q²)Q⁻ⁿ with n=2 →in good agreement with the data (2.5-5 GeV n = 2.10 ± 0.23)
- HOWEVER: data on $|F_K|^2$ factor ~ 20 above prediction!
- $\bullet\,$ No trend in data up to $25\,{\rm GeV}^2$ for approaching the asymp. QCD prediction

Impact on $g_{\mu} - 2$

$$a_{\mu}^{had}(K^+K^-) = 216.3 \pm 2.7 \pm 6.8$$

 \downarrow
 $a_{\mu}^{had}(K^+K^-) = 229.5 \pm 1.4 \pm 2.2$
calculation only based on *BABA*R 2013 data!

(all a_{μ} units in 10^{-11})

 $\begin{array}{c} a_{\mu}^{had}(\pi^{+}\pi^{-}\pi^{+}\pi^{-}) = 133.5 \pm 1.0 \pm 5.2 \\ \downarrow \\ a_{\mu}^{had}(\pi^{+}\pi^{-}\pi^{+}\pi^{-}) = 136.4 \pm 0.3 \pm 3.6 \\ \text{calculation only based on $BABAR$ 2012 data!} \end{array}$

$e^+e^- \rightarrow K^+K^-$

Impact on $g_{\mu} - 2$

Measurement of hadronic cross sections via ISR is a very productive field in addition to B-physics at BABAR

- Most accurate measurements of $\sigma(e^+e^- o p \bar{p}/K^+K^-/\pi^+\pi^-\pi^+\pi^-)$
- From threshold of the invariant mass up to $\sim 4.5\,{
 m GeV}/c^2$

 $e^+e^-
ightarrow par{p}$

- Enhancement at threshold of the FF confirmed
- $|G_E/G_M|$ measured via angular distributions for $m_{p\bar{p}} < 3\,{
 m GeV}$

 $e^+e^-
ightarrow K^+K^-/\pi^+\pi^-\pi^+\pi^-$

- Important for theoretical predictions of $(g_\mu-2)$
 - \rightarrow Hint for new physics?
 - \rightarrow In combination with other measurements: $a_{\mu}^{\mathsf{exp}}-a_{\mu}^{\mathsf{theory}}\approx 3-4\sigma$

backup slides

PEP-II and the BABAR detector at SLAC

- asymmetric e⁺e⁻-collider:
 9 GeV (e⁻) and 3.1 GeV (e⁺)
- $\sqrt{s} = 10.58 \,\text{GeV} \Rightarrow \Upsilon(4S)$ \Rightarrow above $B\overline{B}$ -threshold

- main purpose: B-physics
- multi purpose detector
- data taken from 1999 2008
- integrated luminosity: 531 fb^{-1} on $\Upsilon(4S)$: 454 fb^{-1} $\approx 600 \cdot 10^6 B\overline{B}$ -pairs

Coherent K^*K^* contribution in $e^+e^- \rightarrow K^+K^-\pi\pi$

Extract number of $K^*(892)^0$ and $K_2^*(1430)^0$ by fitting $K^+\pi^-$ mass in every $40 \text{ MeV}/c^2$ bin of $K^-\pi^+$ mass

 \rightarrow less than $1\% K^*(892)^0 K^*(892)^0$

Extract number of $K^*(892)^+$ and $K_2^*(1430)^+$ by fitting $40 \text{ MeV}/c^2$ bins of $K^-\pi^0$ mass $\rightarrow 30\% \ K^*(892)^{\pm}K^*(892)^{\mp}$

 $e^+e^- \rightarrow \phi \pi \pi \rightarrow K^+ K^- \pi \pi$

 $e^+e^-
ightarrow \phi \pi^+\pi^-
ightarrow K^+K^-\pi^+\pi^-$

- ϕ and $\pi^+\pi^-$ system are in S-wave
- pions in $\pi^+\pi^-$ system are in S-wave
- kaons from φ are in P-wave (as expected)

charmonium branching ratios

 $\begin{array}{lll} & \mathcal{B}_{\psi(2S)\to J/\psi}^{PDG} & \mathcal{B}_{\psi(2S)\to J/\psi}^{PDG} & \pi^+\pi^- & = & 0.336 \pm 0.004 \\ & \mathcal{B}_{\psi(2S)\to J/\psi}^{LEO} & \mathcal{B}_{\psi(2S)\to J/\psi}^{LEO} & \pi^+\pi^- & = & 0.3504 \pm 0.0007_{\text{syst}} \pm 0.0077_{\text{ext}} \end{array}$

 \rightarrow agrees with recent CLEO result (PRD 78, 011102 (2008))

M4+ (GeV/c2)

ISR at BABAR