

Kaon Physics at CERN: recent results from the NA48/2 & NA62 experiments

Cristina Biino * - INFN Torino

FPCP2013 – Flavor Physics & CP Violation – 11th Meeting

Buzios, 19-24 May, 2013

*On behalf of the NA48/2 & NA62 Collaborations

Outline

- Kaon physics at CERN
 ★ the NA48/2 & NA62 experiments
- High precision measurement of the semileptonic KI3 decays $K^{\pm} \rightarrow \pi^{0} e^{\pm} v$ and $K^{\pm} \rightarrow \pi^{0} \mu^{\pm} v$ * Introduction & parametrization
 - ★ Form Factors results
- Studies of the rare decay $K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$

Also at this conference more NA62 results by Paolo Massarotti:

- Lepton universality tests at the NA62 experiment and
- Prospects for $K^+ \rightarrow \pi^+ \nu \nu$ observation at CERN

2

New

NA48 and NA62 experiments at CERN

NA62 A

K_L+K_S

K_L+K_S

K_s High

Intensity

ĸs

Hi.

Ks

High

A fixed target experiment at the CERN SPS dedicated to the study of **CP** violation and rare decays in the kaon sector

ΈRΝ

Kaon Physics

3

The CERN Kaon facility

C. Biino – FPCP 2013

NA48/2 simultaneous K[±] beam

NAGZ S

NA48/2 beams: simultaneous K⁺/K⁻, focused, high momentum, narrow band designed to precisely measure $K^{\pm} \rightarrow \pi^{+}\pi^{-}\pi^{\pm}$ ($\pi^{0} \pi^{0} \pi^{\pm}$) Dalitz-plot density to search for direct CPV.

NA48 detector

- Liquid Krypton EM calorimeter (LKr)
 $\sigma_E/E = (3.2/JE \oplus 9.0/E \oplus 0.42)\%$ (E in GeV/)
 $\sigma_x = \sigma_y = 4.2/E^{\frac{1}{2}} \oplus 0.6$ mm (E in GeV/)
 Magnetic spectrometer (4 DCHs + dipole magnet)
- $\sigma_{p}/p = (1.0 \oplus 0.044 \text{ p})\%$ (p in GeV/c)
- > Charged Hodoscope σ_t = 150 ps
- > Muon Veto counter

5

The NA48/2 experiment at CERN Kaon facility

C. Biino – FPCP 2013

★ K^{\pm} → $\pi_0^{0}I^{\pm}$ ∧ (KI3) Form Factors

Vus and Standard Model Test

The most precise test of the CKM unitarity comes from the $|V_{us}|$ (and the $|V_{ud}|$) measurement:

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$

Departures from unity should be a signal of new physics \Longrightarrow G_F in the leptonic decays would be different from G_F in W coupling with quarks

In 2004 the CKM unitarity was not completely certified:

1 -
$$|V_{ud}|^2$$
 - $|V_{us}|^2$ = 0.0035(15) from PDG

Efforts from both experimental and theoretical side.

The traditional very clean K[±]I3 and many other different decay modes (semileptonic charged kaon decays, leptonic kaon decays, Hyperon, muon decay, tau decay,....) have been considered. $K^{\pm} \rightarrow \pi^{0} l^{\pm} v$ (Kl3) and Vus - Introduction Precision measurement of $K^{\pm} \rightarrow \pi^{0} l^{\pm} v$ (Kl3) provide the most accurate and theoretically cleanest way to access $|V_{us}|$ The rate of $K^{\pm} \rightarrow \pi^{0} l^{\pm} v$ (Kl3) is given by the formula:

$$\Gamma(\textbf{KI3(\gamma)}) = \frac{G_{F}^{2} m_{K}^{5}}{192 \pi^{3}} C_{K}^{2} S_{EW} |V_{us}|^{2} |f_{+}(0)|^{2} I_{K}^{i} (1 + 2\delta_{SU(2)}^{i} + 2\delta_{EM}^{i})$$

★ Theory:

- S_{EW} = 1.0232 universal short distance EW correction
- f₊(0) form factor at 0 momentum transfer
 - Isospin breaking correction
 - Long distance EM effect
- **★** Experiment:

• $\delta^{I}_{SU(2)}$

• δ^I_{FM}

- Γ branching ratio and lifetime (inclusive of radiative corrections)
- I_{κ}^{I} integral of the matrix element over phase space

8

 $K^{\pm} \rightarrow \pi^0 l^{\pm} \nu$ (Kl3) Form Factors

 $K^{\pm} \rightarrow \pi^{0} I^{\pm} v$ (KI3) Form Factors - Introduction

The phase space integral depends on the matrix element.

 K_{I3} decays are described by two vector form factors $f_{\pm}(t)$ and the matrix element can be written as:

$$\mathsf{M}=\mathsf{G}_{\mathsf{F}}/2 \,\mathsf{V}_{\mathsf{US}}\left(\mathbf{f}_{\mathsf{+}}(\mathbf{t})(\mathsf{P}_{\mathsf{K}}+\mathsf{P}_{\pi})^{\mu} \,\overline{\mathsf{u}}_{\mathsf{I}} \gamma_{\mu} \,(1+\gamma_{5})\mathsf{u}_{\nu}+\mathbf{f}_{-}(\mathbf{t}) \,\mathsf{m}_{\mathsf{I}} \,\overline{\mathsf{u}}_{\mathsf{I}} (1+\gamma_{5})\mathsf{u}_{\nu}\right)$$

- $t=q^2$ is the squared 4-momentum transfer to the I-v system
- $f_{-}(t)$ can only be measured in $K_{\mu3}$ decays ($m_e << m_K$)
- *f*₊(t) is the vector form factor and *f*₀(t) the scalar form factor, related through the formula:
- Both scalar and vector form factors are measured relatively to f₊(0) (input from theory)

$$f_0(t) = f_+(t) + \frac{t}{(m_\kappa^2 - m_\pi^2)} f_-(t)$$

$$\overline{f_{+}}(t) = \frac{f_{+}(t)}{f_{+}(0)} \qquad \overline{f_{0}}(t) = \frac{f_{0}(t)}{f_{+}(0)}$$

9

$K^{\pm} \rightarrow \pi^{0} I^{\pm} v$ Form Factors - Parametrization

 Pole Parametrization: assume the exchange of vector (1⁻) and scalar (0⁺) resonances and mass m_v/m_s. f₊(t) can be described by K*(892), for f₀(t) no obvious dominance is seen

$$\overline{f_{+,0}}(t) = \frac{m_{V,S}^2}{m_{V,S}^2 - t}$$

 Linear and quadratic parametrization: Taylor expansion in the momentum transfer. No direct physical meaning

$$\overline{f_{+,0}}(t) = \left(1 + \lambda_{+,0} \frac{t}{m_{\pi}^{2}}\right)$$

$$\lim_{\pi \to \infty} \lim_{\pi \to \infty} \lim_{\pi$$

$K^{\pm} \rightarrow \pi^{0} I^{\pm} v$ events selection

- 1 charged lepton and 2γ, in time
- Lepton tag based on E/p and muon counter
- Cut on the reconstructed $\gamma\gamma$ mass: $|M_{\gamma\gamma} M_{\pi0}| < 10 \text{ MeV/c}^2$
- Cut on the missing mass: $M^2_{Miss} < 10 (\dot{M}eV/c^2)^2$
- Total Kaon energy (under the hypothesis of a single undetected neutrino): $55 < E_{K} < 65$ GeV

 K^{\pm}

- Data collected in 2004 in a 3 day run with a minimum bias trigger:
- 4.0 10⁶ K[±]e³ candidates selected
- 2.5 10⁶ K[±]µ3 candidates selected

 $K^{\pm} \rightarrow \pi^0 l^{\pm} \nu$ (K13) Form Factors

C. Biino - FPCP 2013

Very low background, at per mill level

$\pi^{\pm}\pi^{0}$ background suppression

K[±]e3

- Misidentification of the pion
- Cut on event p_t > 0.02 GeV/c:
 - acceptance loss ~3% and
 - background contamination <0.1%

К[±]_{μ3}

- Misidentification of the pion or pion decay in flight
- 2D cut in the total mass (in the pion hypothesis) and the π⁰ transverse momentum plane:
 - acceptance loss ~24%
 - background contamination ~0.5%

$K^{\pm} \rightarrow \pi^{0} I^{\pm} v$ background and Dalitz plot

- The distribution of the residual background in the Dalitz plot is taken into account in the fit
- In the Kµ3 there is an additional contribution of the ππ⁰π⁰
 background (small but it introduces a slope in the Dalitz Plot)

Pion energy vs Muon energy (CM)

Radiative effects

Radiative corrections included • at first order:

 $\Gamma_{KI3} = \Gamma_{KI3}^{0} + \Gamma_{KI3}^{RAD} = \Gamma_{KI3}^{0} (1 + 2\delta_{EM}^{I3})$

- Simulation code based on KLOE code [C.Gatti EPJ C45 (2006) 417]
- Parameters for normalization from [JHEP 11 (2008) 06]

	δ_{EM}
Ke3	(0.050 ± 0.125)%
Κμ3	(0.008 ± 0.125)%

~ 10% effect on Ke3, ~ 1% effect on Kµ3

 $K^{\pm} \rightarrow \pi^0 l^{\pm} \nu$ (Kl3) Form Factors

Dalitz plot - corrections and fitting

$$\rho(E_{+}^{*},E_{\pi}^{*}) = \frac{d^{2}N(E_{+}^{*},E_{\pi}^{*})}{dE_{+}^{*}dE_{\pi}^{*}} \propto A f_{+}^{2}(t) + B f_{+}(t) (f_{0}-f_{+}) \frac{(m_{K}^{2}-m_{\pi}^{2})}{t} + C [(f_{0}-f_{+}) \frac{(m_{K}^{2}-m_{\pi}^{2})}{t}]^{2}$$

A, B, C = known kinematical terms

15 Kaon Physics

$K^{\pm} \rightarrow \pi^0 l^{\pm} \nu$ (K13) Form Factors

Fit in 5x5 MeV² cells

C. Biino – FPCP 2013

π^0 energy in the kaon rest frame

Data vs MC

- Data vs MC disagreement below 1%
- Residual differences taken into account in the systematics

Systematic errors

\mathbf{k}^{\pm}	$\Delta\lambda'_+$	$\Delta\lambda_+''$	$\Delta\lambda_0$	Δm_V	Δm_S	V [±]	$\Delta\lambda_+'$	$\Delta\lambda_+''$	Δm_V
$\mathbf{n}_{\mu 3}$		$\times 10^{-3}$		MeV	V/c^2	R _{e3}	$\times 10$	-3 '	${ m MeV/c^2}$
Kaon Energy	± 0.1	± 0.0	± 0.3	±1	± 8	Kaon Energy	± 0.3	± 0.1	± 6
Vertex	± 1.0	± 0.5	± 0.1	± 2	± 7	Vertex	± 0.2	± 0.1	± 0
Bin size	± 0.8	± 0.4	± 0.7	± 3	± 10	Bin size	± 0.0	± 0.1	± 2
Energy scale	± 0.3	± 0.1	± 0.1	± 0	± 1	Energy scale	± 0.0	+0.0	+0
Acceptance	± 0.2	± 0.1	± 0.3	± 2	± 5	A seesten search	± 0.1		10
$K_{2\pi}$ background	± 1.7	± 0.5	± 0.6	± 3	± 0	Acceptance	± 0.2	± 0.0	± 5
2nd Analysis	± 0.1	± 0.1	± 0.2	± 2	± 5	2nd Ana	± 0.9	± 0.4	± 1
FF input	± 0.3	± 0.8	± 0.1	± 7	± 3	FF input	± 0.4	± 0.0	± 1
Systematic	± 2.2	± 1.1	± 1.0	± 9	± 16	Sytematic	±1.1	± 0.4	± 7
Statistical	± 3.0	± 1.1	± 1.4	± 8	± 31	Statistical	± 0.7	± 0.3	± 3

$K^{\pm}\mu 3$

- Main error coming from the $\text{K}2\pi$ background
- Total error dominated by the statistics

K[±]e3

• Total error dominated by the systematics

$K^{\pm} \rightarrow \pi^0 I^{\pm} v$ - Preliminary Results

Quadratic	λ'_{+} (10 ⁻³)	λ_{+}'' (10 ⁻³)	λ_0 (10 ⁻³)
$K_{\mu 3}^{\pm}$	$26.3 \pm 3.0_{\rm stat} \pm 2.2_{\rm syst}$	$1.2\pm1.1_{\rm stat}\pm1.1_{\rm syst}$	$15.7 \pm 1.4_{\mathrm{stat}} \pm 1.0_{\mathrm{syst}}$
K_{e3}^{\pm}	$27.2\pm0.7_{\rm stat}\pm1.1_{\rm syst}$	$0.7\pm0.3_{\rm stat}\pm0.4_{\rm syst}$	
Pole (MeV/c^2)	m_V		m_S
$K_{\mu3}^{\pm}$	$873 \pm 8_{\mathrm{stat}} \pm 9_{\mathrm{syst}}$		$1183 \pm 31_{\rm stat} \pm 16_{\rm syst}$
K_{e3}^{\pm}	$879 \pm 3_{ m stat} \pm 7_{ m syst}$		

 $K^{\pm} \rightarrow \pi^0 l^{\pm} \nu$ (Kl3) Form Factors

C. Biino – FPCP 2013

$K^{\pm} \rightarrow \pi^{0} I^{\pm} v$ - Preliminary Combined Results

Quadratic $(\times 10^{-3})$	λ'_{+} (10 ⁻³)	λ " ₊ (10 ⁻³)	λ ο (10 ⁻³
$K_{\mu3}^{\pm}K_{e3}^{\pm}$ combined	26.98 ± 1.11	0.81 ± 0.46	16.23 ± 0.95
Pole (MeV/c^2)	m_V		m_S
$K_{\mu3}^{\pm}K_{e3}^{\pm}$ combined	877 ± 6		1176 ± 31

- NA48/2 is the first experiment which measures both K⁺ and K⁻, for both Ke3 and Kµ3.
- Results for K[±]e3 and K[±]µ3 from NA48/2 in good agreement
- High precision preliminary results, competitive with the world average. Smallest error in the combined result.
- O(10⁷) decays collected in 2007/8 by NA62 (O(10⁶) in K⁰I3).....

× K^{\pm} → π^{\pm} $\lambda \lambda$ Rare Decay

- π[±]νν kare Decay

Leading contribution at O(p⁴): cusp at 2m_π threshold (z =0.32) [Ecker, Pich, De Rafael, NPB303 (1988) 665]

21

Kaon Physics

O(p⁶) 'Unitarity corrections' may increase BR at low \hat{c} by 30-40% & result in a non-zero rate at $m_{\gamma\gamma} \rightarrow 0$ [D'Ambrosio, Portoles, PLB386 (1996) 403]

BNL E787: 31 candidates with 5 bkg events; $BR = (1.10 \pm 0.32) \times 10^{-6}$ with $\hat{c} = 1.80 \pm 0.6$

[PRL79 (1997) 4079]

 $K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$ Rare Decay

$K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma - \text{Event selection}$

- One and only one reconstructed track in the acceptance of the main detectors.
- z of the decay inside the fiducial decay volume (98 m region). Vertex defined by the Closest Distance of Approach (CDA) between the tracked pion and the nominal K[±] beam directions.
- Reconstructed track momentum: 10(8) <p< 40(50) GeV/c for NA48/2 (NA62).
- E/p < 0.85 [E is the energy deposited by the track in the LKr; p is the track momentum measured by the spectrometer.
- Two independent clusters in the LKr with $E_{\gamma} > 3 \text{ GeV}$
- Both clusters in time with the reconstructed track.
- The reconstructed $\pi^{\pm}\gamma\gamma$ invariant mass should be in the range (0.48-0.51) GeV/c2 (15 MeV/c² from K[±] mass)
- $0.2 < z = (m_{\gamma\gamma}/m_{K})^{2} < 0.54$ (z = 0.075 for $\pi^{\pm}\pi^{0}$ decays).

$K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$ –Signal vs. background or Data sample

$K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma - z$ spectra ChPT fits O(p⁶)

- Visible region is above the $K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$ peak with $m_{\gamma\gamma} = m_{\pi0}$: z > 0.2 or $m_{\gamma\gamma} > 220$ MeV/c²

- Cusp-like behavior at $z = (2m_{\pi}/m_{K})^{2}$ is observed

Ĉ =	O (p4)	О (р6)
NA48/2 (2004)	$1.36 \pm 0.33_{stat} \pm 0.07_{syst} = 1.36 \pm 0.34$	$1.67 \pm 0.39_{stat} \pm 0.09_{syst} = 1.67 \pm 0.40$
NA62 (2007)	$1.71 \pm 0.29_{stat} \pm 0.06_{syst} = 1.71 \pm 0.30$	$2.21 \pm 0.31_{stat} \pm 0.08_{syst}$ = 2.21 ± 0.32
combined	$1.56 \pm 0.22_{stat} \pm 0.07_{syst} = 1.56 \pm 0.23$	$2.00\pm0.24_{stat}\pm0.09_{syst}$ = 2.00 ± 0.26
[D'Ambrosio,	Portolés, PLB386 (1996) 403]	Preliminar

ChPT O(p6) combined BR fit (model dependent): BR = $(1.01 \pm 0.06) \times 10^{-6}$

The combined 2004+2007 results contain correlated uncertainties

• From PDG (= BNL E787): BR = $(1.10 \pm 0.32) \times 10^{-6}$ [PRL79 (1997) 4079]

 $K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma - \text{fit results}$

- Total number of candidates (NA48/2 and NA62): 322
- Background contamination: (9±1)% due to $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}(\gamma)$ and $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}\pi^{0}$ with merged photon clusters in the LKr calorimeter
- Very low systematic uncertainties
- ChPT O(p4) vs O(p6) models cannot be discriminated so far.

Summary & Future

NA48/2: 4 million K[±]e3 and 2.5 million K[±]µ3 events with very small background analysed

- Very precise preliminary results on K[±]e3 and K[±]µ3 form factors, competitive with the current world averages
- First measurement for both K⁺ and K[−] decays

NA62: (NA48 successor) 2007/08 data for measurement of $\Gamma(K \rightarrow ev)/\Gamma(K \rightarrow \mu v)$

• Huge K[±]e3 and K[±] μ 3 statistics of O(10⁷) events on tape.

Also special run with neutral beam

• O(10⁶) events of each $K^0_L e3$ and $K^0_L \mu3$ on tape

NA48/2(2004)&NA62(2007): New measurement of the $K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$ decay with minimum bias trigger data has been presented

- New precise experimental data on ChPT parameter ĉ
- ChPT O(p4) vs O(p6) models cannot be discriminated

NA62: Foreseen to start the data taking for the main goal of NA62 in 2014 to measure the Branching Ratio of the very rare decay $K^+ \rightarrow \pi^+ \nu \nu$

- 5x10¹² K⁺ decays/year for a record SES of ~10–12
- $K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$ (and many other decays...) will be killed by the main trigger, but extra-triggers can be added and special runs could be scheduled
- Good opportunity for new studies, suggestions are welcome!