Limits on the Fourth Generation Andrew Ivanov Kansas State University On behalf of the CMS and ATLAS Collaborations

Sequential Fourth Generation

- The sequential fourth generation is a simplest extension of SM3
- Assuming the SM4 a new heavy up-type quark t' is expected to decay into Wb (Wq), and a new down-type quark b' to decay into Wt (Wq)
- Electroweak precision measurement favor small mass splitting between 4th generation quarks m(t') m(b') < M_W

 Higgs cross section measurements in various channels disfavor sequential 4th generation, since this model predicts a specific hierarchy of signal strengths which are not supported by experimental results

- Vector-like quarks, where both chiralities have the same transformations under the electroweak group SU(2)xU(1)
- Vector-like quarks appear in
 - Little Higgs model
 - Warped extra dimensions
 - Non-minimal super-symmetric extensions
- Cancel quadratic divergences in the Higgs mass induced by radiative corrections in top quark

Vector-Like Quark

- Production at LHC:
 - Pair production via strong interactions
 - Cross sections based on HATHOR (Hadronic Top and Heavy quarks crOss section calculatoR)
 - Single production
- Decays (in most models couple to SM 3rd generation quarks):
 - t' -> Wb and b'->Wt are complemented with FCNC decays t'->Zt, t'->Ht and b'->Zb, Hb, and also t'->tg, tγ at the next leading order diagrams
 - Weak-isospin singlet has three dominant decay modes
 - Weak-isosping doublet t' decays into Zt, Ht

2000000

AT LAS

- Exploits the fact that W-boson from heavy t' is often reconstructed as a single jet
- Event Selection:
 - e/ μ , $p_{\scriptscriptstyle T}$ > 25/20 GeV
 - \geq 3/4 jets, \geq 1 b-tag, W_{had}^{typeI/II}
 - Missing $E_T > 35/20$ GeV
 - $E_T^{Miss} + m_T > 60 \text{ GeV}$
- Hadronic W reconstruction:
 - W_{had}^{typeI} single jet, p_T > 250 GeV, jet mass [60,110] GeV
 - W_{had}^{typeII} di-jet, p_T > 150 GeV, ΔR < 0.8, mass [60,110] GeV
- $H_T = p_T^{\ell} + Missing E_T + \sum p_T^{jets} > 750 \text{ GeV},$
- $\Delta R(\ell_V) < 1.4$, $b_{1,2} p_T > 160/60 \text{ GeV}$
- Tight Selection:
- min $\Delta R(W_{had}, b_{1,2}) > 1.4$, min $\Delta R(\ell, b_{1,2}) > 1.4$

PLB 718 (2013) 1284

- Reconstructed Mass of t' quark
- Tight Selection used for limit setting using CL_s

PLB 718 (2013) 1284

M_{t'} > 656 GeV @ 95 % C.L. BR (t'→Wb) = 100%

MOST STRINGENT LIMIT TO-DATE

PLB 718 (2013) 1284

$t' \rightarrow Wb$, Ht, Zt (ℓ + jets)

23-MAY-2013

- Search for singlet and doublet t' quarks
- Event Selection:
 - One lepton e/ μ
 - ≥ 3/4 jets, ≥ 2 b-tags,
 - Missing $E_T > 20$ GeV
 - $E_T^{Miss} + m_T > 60 \text{ GeV}$
- Analysis Strategy:
 - Events are classified based on # of b-tags (2,3, \ge 4)
- For 2-b-tag events $H_T = p_T^{\ell} + Missing E_T + \Sigma p_T^{jets} < 700$ GeV to assure orthogonality to t'->Wb search

M_{t'} > 790 GeV @ 95 % C.L. SU(2) doublet

M_{t'} > 640 GeV @ 95 % C.L. SU(2) singlet

$t',b' \rightarrow Wq$ (di-lepton)

- Search for decays into quarks of first two generations or a bottom quark : t'-> Wd, Ws, Wb or b' -> Wu, Wc
- Event Selection:
 - Two opposite sign high $p_{\scriptscriptstyle T}$ leptons (ee/eµ/µµ)
 - Z/ γ -> ee/ $\mu\mu$ veto
 - ≥ 2 jets

•
$$H_T = \sum p_T^{\ell} + \sum p_T^{jets} > 130 \text{ GeV}$$

- Analysis Strategy:
 - Perform kinematic mass reconstruction exploiting that neutrinoes approximately collinear with leptons
 - Take an average of two reconstructed masses, keep events if they are within 25 GeV

W

W

t'

t'bar

q

000000000

nu

nu

$t',b' \rightarrow Wq$ (di-lepton)

PRD 86 (2012) 012007

- Event Selection:
 - e/ μ , p_{T} > 30 GeV
 - ≥ 4 jets, ≥ 1 b-tag
 - Missing $E_T > 20$ GeV
- Analysis Strategy:
 - Perform a fit to $S_T = p_T^{\ell} + \text{Missing } E_T + \sum p_T^{jets}$ for different jet multiplicity bins $(N_{jets} = 4, 5, 6, \ge 7)$
 - Results can also be interpreted for t'->tZ

JHEP 01 (2013) 154

$b' \rightarrow Wt, t' \rightarrow Zt (\ell + jets)$

JHEP 01 (2013) 154

 $\mathfrak{I}(\mathbf{pp} \to \mathbf{Q} \mathbf{\overline{Q}}) \ (\mathbf{pb})$

$b' \rightarrow Wt, t' \rightarrow Zt (\ell + jets)$

M_{b'} > 675 GeV @ 95 % C.L. BR (b'→Wt) = 100%

M_{t'} > 625 GeV @ 95 % C.L. BR (t'→Zt) = 100%

MOST STRINGENT LIMIT TO-DATE

- Event Selection:
 - \ge 3 leptons (e,µ) , p_T > 20,10,10 GeV
 - γ* -> ee/μμ veto
 - ≥ 1 b-jet
- Analysis Strategy:
 - Classify events based on number of leptons, hadronic taus, b-jets, pair of leptons consistent with Z boson
 - 240 exclusive channels
 - Data-driven background estimate for non-prompt leptons
 - Perform a fit to

•
$$S_T = \Sigma p_T^{\ell} + Missing E_T + \Sigma p_T^{jets}$$

CMS-PAS-SUS-12-027

 $M_{b'} > 760 \text{ GeV} @ 95 \% \text{ C.L.}$

 $M_{b'} > 660 \text{ GeV} @ 95 \% \text{ C.L.}$

MOST STRINGENT LIMITS TO-DATE

CMS-PAS-SUS-12-027

$M_{b'} > 715 \text{ GeV } @ 95 \% \text{ C.L.}$ BR(Wt) =BR(Zb) = 0.5

CMS-PAS-SUS-12-027

b'→ Wt (same-sign di-lepton)

- Event Selection:
 - 2 same-sign leptons (e, μ), p_T > 25 GeV
 - γ* -> ee/μμ veto
 - ≥ 2 jets, ≥ 1 b-tag
 - Missing $E_T > 40$ GeV
 - $H_T = \Sigma p_T^{\ell} + \Sigma p_T^{jets} > 650 \text{ GeV}$

Background	# of Events
tt+W/Z	5.2 ± 0.9
Di-boson	1.7 ± 0.5
Non-prompt	1.0 ± 0.6
Charged MisID	1.5 ± 0.4
Total Exp.	9.3 ± 1.3
Observed	15

b'→ Wt, Wq (same-sign di-lepton)

b' (same-sign di-lepton)

For M_{b'} = 550 GeV BR (b' → Wt) < 0.35 @ 95 % C.L.

t' (same-sign di-lepton)

23-MAY-2013

$T^{5/3} \rightarrow Wt$ (same-sign di-lepton)

- Event Selection:
 - 2 same-sign leptons (e,µ), p_T > 30 GeV
 - γ* -> ee/μμ veto
 - N_{constituents} ≥ 5

•
$$H_T = \Sigma p_T^{\ell} + \Sigma p_T^{jets} > 900 \text{ GeV}$$

- Boosted W-bosons and top-quarks are identified using CA8 jets and jet substructure algorithms
- W-boson:
 - $N_{subjets} = 2, 60 < m_{jet} < 130 \text{ GeV}$
- Top-quark:
 - $N_{subjets} = 3, 140 < m_{jet} < 250 \text{ GeV},$
 - Min m_{pair-wise} > 50 GeV

$T^{5/3} \rightarrow Wt$ (same-sign di-lepton)

MOST STRINGENT LIMIT TO-DATE

Backgrounds	# of Events
Prompt	3.9 ± 0.8
Non-prompt	2.6 ± 1.8
Charge MisID	0.1 ± 0.0
Total Exp.	6.6 ± 2.0
Observed	11

M_{T 5/3} > 770 GeV @ 95 % C.L.

CMS-PAS-B2G-12-012

Inclusive Search for Chiral 4th Generation

- Inclusive search assuming degenerate masses $m_{t'} = m_{b'}$
- $BR(t' \rightarrow Wb) = BR(b' \rightarrow Wt) = 100\%$
- Simplified CKM4 matrix

$$CKM4 = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} & V_{ub'} \\ V_{cd} & V_{cs} & V_{cb} & V_{cb'} \\ V_{td} & V_{ts} & V_{tb} & V_{tb'} \\ V_{t'd} & V_{t's} & V_{t'b} & V_{t'b'} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \sqrt{A} & \sqrt{1-A} \\ 0 & 0 & \sqrt{1-A} & \sqrt{A} \end{pmatrix}$$

- Event Selection:
- \geq 1 leptons (e,µ) , p_T > 40 GeV
- ≥ 1 jet , ≥ 1 b-tag , p_T > 30 GeV

IW	2W	3W	4W
ťb	ťť	b't + b't'	b'b'

PRD 86 (2012) 112003

- Missing $E_T > 40$ GeV
- Events classified based on # of W bosons

Inclusive Search for Chiral 4th Generation

Ib3W

- Fit to $S_T = p_T^{\ell} +$ Missing $E_{T} + p_{T}^{b} +$ $\mathbf{p}_{\mathsf{T}}^{\mathsf{j}} + \Sigma \mathbf{p}_{\mathsf{T}}^{\mathsf{W}-\mathsf{had}}$
- in single-lepton 1W and 3W channels
- 2D-fit in 1ℓ 2W
- Counting-experiment
 - In 1ℓ 4W,
 - Same-sign dilepton
 - and tri-lepton channels

PRD 86 (2012) 112003

Inclusive Search for Chiral 4th Generation

 $M_{t'} = M_{b'} > 685 \text{ GeV} @ 95 \% \text{ C.L.}$

Assume no t'b' electroweak production for non-degenerate masses

- Search for t*, spin 3/2 quark
- Event Selection:
 - e/μ , p_T > 30/26 GeV
 - ≥ 6 jets, ≥ 1 b-tag
- Analysis Strategy:
 - Kinematic t*-quark mass reconstruction
 - $m(\ell_V) = m(qq) = M_W$
 - $m(\ell_V b) = m(qqb) = M_{top}$
 - $m(\ell_V bg) = m(qqbg) = M_{reco}$
 - Construct and minimize χ^{2}

CMS-PAS-B2G-12-014

Search for single b* → Wt

- Search for excited bottom quark, which is produced via chromomaganetic interaction and decaying electroweakly
- Event Selection:
 - Dilepton
 - Two opposite sign high p_T leptons (ee/eµ/µµ), ≥ 1 jet,
 - Missing $E_T > 50$ GeV
 - Z/ γ -> ee/ $\mu\mu/\tau\tau$ veto
 - Discriminating variable: \mathbf{H}_{T}
 - l + jets
 - Lepton (e/ μ), p_T > 25 GeV
 - ≥ 4 jets, ≥ 1 b-tag
 - Missing $E_T > 30/25$ GeV
 - m_T^W > 30 GeV
 - Discriminating variable: reconstructed mass

Search for single b[∗] → Wt

For purely left-handed b* and unit strength chromomagnetic coupling

M_{b*} > 870 GeV @ 95 % C.L.

FIRST SEARCH

PLB 721 (2013) 171

Summary

Mass, Dominant Decay	Limit @ 95% C.L.	Experiment, Channel
m(t′), t′ → Wb	> 656 GeV	ATLAS, l+jets
m(t′), t′ → Ht	>~850 GeV	ATLAS, I+jets
m(t′), t′ → Zt	> 625 GeV	CMS, l+jets
m(t',b'), t', b' → Wq	> 350 GeV	ATLAS, OS dilepton
m(b′), b′ → Wt	> 760 GeV	CMS, multi-lepton
m(b′), b′ → Zb	> 660 GeV	CMS, multi-lepton
Inclusive t', b'	> 685 GeV	CMS, multi-channel
m(t'), SU(2) singlet	> 640 GeV	ATLAS, l+jets
m(b'), SU(2) singlet	> 590 GeV	ATLAS, SS dilepton
m(t'), SU(2) doublet	> 790 GeV	ATLAS, l+jets
m(t′), t′ → tg	> 794 GeV	CMS, l+jets

Conclusions

- Both CMS and ATLAS have a rich physics program on searches for heavy exotic quarks
- Many new analysis and interpretations using 8 TeV dataset of 20 fb⁻¹ are underway
- Stay tuned for new results !
- <u>https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsB2G</u>
 <u>https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ExoticsPublicResults</u>

Muito obrigado pela vossa atenção !

direinha sus