Status of SUSY searches

FPCP2013, Buzios, Brazil, May 19-25

A. Lipniacka, University of Bergen/CERN on behalf of ATLAS & CMS

Slide 1

SUSY searches with ATLAS and CMS

What are we searching for and why?

The Data and Search Techniques

Third Sfamily direct and in gluino decays

Weak Production

Dark Matter&SUSY Higgs&SUSY

Slide 2

What could we learn if we find a ^{Standard particles} "SUSY like" process

There are therefore Agents in Nature able to make the Particles of Bodies stick together by very strong Attractions. And it is the business of experimental Philosophy to find them out.

Newton, Principia

Symmetry between "Agents in Nature" and "Particles of Bodies" SUPERSYMMETRY

 u
 c
 i
 γ

 d
 s
 b
 g

 v
 v
 v
 Z

 H
 v
 v
 Z

 H
 v
 v
 Z

 H
 v
 v
 V

 H
 v
 v
 V

 H
 v
 v
 V

 H
 v
 v
 V

 H
 v
 v
 V

SUSY particles

SM "Particles of Bodies" make only 5% of the Universe

Analysis of fluctuations of BB relict: Microwave radiation fluctuations with WMAP and PLANCK

Galaxy rotation curves

If not enough matter, the objects in galaxies would fly apart F. Zwicky, Astrophys. J. 86 (1937) First systematic study of rotation of stars in Galaxies by Vera Rubin, 1970. Result:

Before Planck

After Planck

Most of the matter (90%) is dark: it does not emit light Slide 3

One fermionic/bosonic partner to the SM fermions/bosons with SM coupling

particle	spin	I sparticle	spin	name
$l=e,\mu, au, u$	1/2	l_R, l_L	¹ O	slepton
q=u,d,s,c,b,t	1/2	$ ilde{q}_R, ilde{q}_L$	0	squark
\boldsymbol{g}	1	$ ilde{g}$	1/2	gluino
γ	1	$\tilde{\gamma}$	1/2	photino
W^{\pm}	1	$ ilde W^\pm$	1/2	wino
Z	1	\tilde{Z}	1/2	zino
H_1^0, H_2^0	0	$ ilde{H}^0_1, ilde{H}^0_2$	1/2	higgsino
H^{\pm}	0	$ ilde{H}^\pm$	1/2	higgsino

R parity,
$$R = -1^{2J+3B+L}$$
, $R = -1$ for Sparticles, $R = 1$ for particles

Gauge Eigenstates

Mass Eigenstates

Slide 4 If R-parity conserved, LSP is a Dark Matter candidate. RPC results in this talk

F

What is the reason for the Higgs boson mass?

Anna Lipniacka

www.ift.uib.no

ATLAS&CMS

ATLAS and CMS each : 20-22/fb at 8 TeV 4.5-5.5/fb at 7 TeV In this talk primarily 8 TeV full luminosity results

D. Côté - SUSY WG

www.ift.uib.no

Slide 8

SUSY final states and search techniques

A gallery of topologies with high-medium transverse momentum "objects"; leptons (taus), jets (b-jets), missing transverse energy due to escaping "DM candidate" LSP.

****SEARCH STRATEGY ORIENTED TOWARDS FINAL STATE TOPOLOGIES,** CHARACTERIZED by "object multiplicity" (ex. 1 lepton, jets, missing transverse energy) Each topology is interpreted in search for SEVERAL SUSY final states.**

Smart and sophisticated kinematic variables aiming at distinguishing between the tails of he SM distributions and candidates for SUSY events.

SUSY search techniques, background control

Excellent control of backgrounds, typically measured in kinematic "Control Regions" (CR) and propagated to the Signal Regions (SR) with simulations.

SUSY final states for results interpretation, examples

SUSY search techniques, kinematic variables, examples

Missing transverse energy: vector sum of transverse momenta of all visible "objects"

Simulations used to account for the shape difference of backgrounds between CR and SR

Slide 11 Search for gluino-mediated bottom- and top-squarkproduction in pp collisions at 8 TeV, arXiv:1305.2390

SUSY searches with ATLAS and CMS, FPCP2013

SUSY search techniques, kinematic variables, examples

Effective mass (Meff):

 $m_{\rm eff} = \sum_i (p_{\rm T}^{\rm jet})_i + E_{\rm T}^{\rm miss} + \sum_i (p_{\rm T}^{\rm lep})_j$

Shown after final cuts, except for Meff selection, indicated by the arrow. 6-jets signal region for high Meff, compared with gluino production and decay via chargino

Search for gluino production and decays in final states with no leptons and up to 6 jets. ATLAS-CONF-2013-035 Slide 12

SUSY search techniques, kinematic variables, examples

Transverse mass of the lepton and the missing transverse momentum has an "end-point" for leptons and neutrinos from V-bosons decays.

$$m_T = \sqrt{2 \left(|\vec{p}_T^{\text{miss}}| |\vec{p}_T^{\ell}| - \vec{p}_T^{\text{miss}} \cdot \vec{p}_T^{\ell} \right)},$$

Slide 13

SUSY search techniques, kinematic variables, examples

"Stranverse mass":

 $m_{\mathrm{T2}} = \min_{\mathbf{q}} \left[\max\left(m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T}}^{\ell 1}, \mathbf{q}_{\mathrm{T}}), m_{\mathrm{T}}(\mathbf{p}_{\mathrm{T}}^{\ell 2}, \mathbf{p}_{\mathrm{T}}^{\mathrm{miss}} - \mathbf{q}_{\mathrm{T}}) \right) \right],$

Qt is a component of missing transverse momentum maximizing the "lepton, qt" combination giving the

SUSY search techniques, kinematic variables, examples

Multijets with Etmiss, no-lepton Final selection other than cut on:

 $E_T^{miss} / \sqrt{H_T}$

SUSY searches with ATLAS and CMS, FPCP2013

Sensitivity less dependent on the number of jets

Ht = scalar sum of transverse momenta of selected jets.

SUSY search techniques, kinematic variables, examples

Simultaneous shape analysis of Ht, Etmiss and the number of b-jets.

Simulations used to account for the shape difference of backgrounds between CR and SR

SUSY searches with ATLAS and CMS, FPCP2013

Search for gluino-mediated bottom- and top-squarkproduction in pp collisions at 8 TeV, arXiv:1305.2390

Results, model exclusions

Excluded regions of SUSY parameter space presented typically in:

- Gluino vs LSP mass planes for different intermediate particles and different final state topologies (simplified models with BR and intermediate mass relations fixed) (Constrained Models)
- 2) Gluino vs squark mass planes, different final states (simplified models with BR and LSP mass relation fixed) (Constrained Models)
- 3) Squark, Slepton, Gaugino vs LSP mass plane, different final states (simplified models with BR and intermediate mass relation fixed)
- 4) Parameter space of Constrained Models (cMSSM/msugra, cGSMB etc)

In the following a series of excluded regions...

Results, gluino decays with third family in final states

ATLAS-CONF-2013-054

Results, gluino decays with top in final states

Slide 19

SUSY searches, electroweak production with staus

SUSY searches, electroweak gaugino production with 3 leptons

"classical" 3 leptons final state search interpreted for Chargino-Neutralino production

Higgs and SUSY

Constrained models (CMSSM/mSUGRA) allow relating Higgs boson mass to the masses of SUSY particles. Limits in "Higgs aware" slice of cMSSM where the Higgs boson mass MSUGRA/CMSSM: $\tan\beta = 30$, $A_0 = -2m_0$, $\mu > 0$ is around 125 GeV. 900

Anna Lipniacka

www.ift.uib.no

SUSY, Higgs and Dark Matter

Limits in "Higgs aware" slice of cMSSM where the Higgs boson mass is around 125 GeV. Relict Dark Matter density can be calculated in this model. It is plausible in the narrow region where the neutralino mass and the stau mass are close ("nearly stau LSP")

Dark Matter Search in Monojet Events

(Applicable to SUSY if only the LSP is kinematically accessible)

DM production at the LHC can be related to DM scattering on protons and to indirect DM detection in an effective theory approach (DM assumed a Dirac Fermion)

Dark Matter Search in Monojet Events

R-parity violation, example search result

Dreams: If we observe a "SUSY-like" particle, what next?

1) Measure spin and decays BRs.

2) Check how Higgs decay BR are affected (third family, invisible)

3) Recalculate relict DM densityStaus (but also sbottoms and stops) related to keeping relict DM densitywithin observed limits via coaanihilation with the LSP

4) Recalculate rare decays ($B \rightarrow \mu \mu$)

5) SUSY mass scale relates to GUT scale, Gauge couplings unifications!

Summary and Perspective

No discovery yet, but this is "consistent" with the relatively heavy Higgs boson - even in constrained models.

Motivations for SUSY still strong, many analyses in progress to full data sets.

Searches are topology-oriented, very large number of final states analyzed (Presented limits valid within a specific simplified or constrained model)

New window opens in 2015 with 14 TeV collision energy! Preparation of 14 TeV analyses ongoing!

References:

twiki.cern.ch/twiki/bin/AtlasPublic/SupersymmetryPublicResults
http://cms.web.cern.ch/news/cms-physics-results

Anna Lipniacka

www.ift.uib.no

Backup

ATLAS SUSY Searches* - 95% CL Lower Limits

	ATLAS SUSY Searches* - 95% CL Lower Limits									
Jian	Model	e , μ, τ, γ	Jets	E ^{miss}	∫ <i>Latt</i> [16-1	Mass limit	$\int Ldt = (4.4 - 20.7)$ to	Reference		
searches	$ \begin{array}{l} MSUGRA/CMSSM \\ MSUGRA/CMSSM \\ \overline{qq}, \overline{q} \rightarrow q\overline{q}_{1}^{0} \\ \overline{q} \rightarrow q\overline{q}_{2}^{0} \\ \overline{qq}, \overline{q}, \overline{q} \\ \overline{q}, \overline{q}, \overline{q}, \overline{q}, \overline{q}, \overline{q} \\ \overline{q}, \overline{q}, \overline{q}, \overline{q}, \overline{q}, \overline{q}, \overline{q} \\ \overline{q}, $	$\begin{matrix} 0 \\ 1 a, \mu \\ 0 \\ 0 \\ 1 a, \mu \\ 2 a, \mu (SS) \\ 2 a, \mu \\ 1.2 c \\ 2 \gamma \\ 1 a, \mu + \gamma \\ \gamma \\ 2 a, \mu (Z) \\ 0 \end{matrix}$	2-6 jats 4 jats 7-10 jats 2-6 jats 2-6 jats 2-4 jats 3 jats 2-4 jats 0-2 jats 0 1 b 0-3 jats mono-jat	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	20.3 5.8 20.3 20.3 4.7 20.7 4.7 20.7 4.8 4.8 4.8 5.8 10.5	q.g. 1.8 Te q.g. 1.24 TeV q. 1.1 TeV q. 1.1 TeV q. 1.3 TeV q. 1.3 TeV q. 1.3 TeV q. 1.1 TeV q. 1.24 TeV q. 1.1 TeV q. 1.24 TeV q. 1.24 TeV q. 1.24 TeV q. 1.27 TeV q. 619 GeV g. 619 GeV g. 619 GeV g. 690 GeV F ¹² scale 645 GeV	$ \begin{split} & m(\tilde{q}) - m(\tilde{q}) \\ & m(\tilde{q}) - m(\tilde{q}) \\ & m(\tilde{q}^2) = 0. GeV \\ & m(\tilde{q}^2) < 0.50 \ GeV \\ & m(\tilde{q}^2) < 0.50 \ GeV \\ & targS < 15 \\ & targS > 18 \\ & m(\tilde{q}^2) > 50. GeV \\ & m(\tilde{q}^2) > 220. GeV \\ & m(\tilde{q}^2) > 10^{-4} \ eV \end{split} $	ATLAS-CONF-2013-047 ATLAS-CONF-2012-104 ATLAS-CONF-2013-054 ATLAS-CONF-2013-047 ATLAS-CONF-2013-047 1208-4688 ATLAS-CONF-2013-007 1208-4688 ATLAS-CONF-2012-104 1209-0753 ATLAS-CONF-2012-144 1211.1167 ATLAS-CONF-2012-152 ATLAS-CONF-2012-152		
g med.	<u></u>	0 2 α, μ (SS) 0 0	3 b 0-3 b 7-10 jets 3 b	Yes No Yes Yes	12.8 20.7 20.3 12.8	9 1.24 TeV 9 900 GeV 9 1.14 TeV 9 1.15 TeV	$\begin{split} m(\widehat{\chi}_{1}^{2}) &\leq 200 {\rm GeV} \\ m(\widehat{\chi}_{1}^{2}) &\leq 500 {\rm GeV} \\ m(\widehat{\chi}_{1}^{2}) &\leq 200 {\rm GeV} \\ m(\widehat{\chi}_{1}^{2}) &\leq 200 {\rm GeV} \end{split}$	ATLAS-CONF-2012-145 ATLAS-CONF-2013-007 ATLAS-CONF-2013-054 ATLAS-CONF-2012-145		
direct production	$ \begin{split} & \underline{\tilde{b}}_{i}\underline{\tilde{b}}_{i}, \underline{\tilde{b}}_{i} \rightarrow bZ_{i}^{0} \\ & \underline{b}_{i}b_{i}, \underline{b}_{i} \rightarrow bZ_{i}^{0} \\ & \underline{b}_{i}b_{i}, \underline{b}_{i} \rightarrow bZ_{i}^{0} \\ & \underline{\tilde{t}}_{i}^{1} (\text{Hght}), \overline{\tilde{t}}_{i} \rightarrow bZ_{i}^{0} \\ & \underline{\tilde{t}}_{i}^{1} (\text{Hght}), \overline{\tilde{t}}_{i} \rightarrow bZ_{i}^{0} \\ & \underline{\tilde{t}}_{i}^{1} (\text{Heatur}), \overline{\tilde{t}}_{i} \rightarrow bZ_{i}^{0$	$\begin{array}{c} 0 \\ 2 o, \mu (SS) \\ 1 \cdot 2 o, \mu \\ 2 o, \mu \\ 2 o, \mu \\ 0 \\ 1 o, \mu \\ 0 \\ 2 o, \mu (Z) \\ 3 o, \mu (Z) \end{array}$	2b 0.3b 1.2b 0.2 jats 0.2 jats 2b 1b 2b 1b 1b	Yas Yas Yas Yas Yas Yas Yas Yas Yas	20.1 20.7 4.7 20.3 20.3 20.1 20.7 20.5 20.7 20.7	b, 100-630 GeV b, 430 GeV I, 167 GeV I, 167 GeV I, 220 GeV I, 150-440 GeV I, 150-580 GeV I, 150-580 GeV I, 200-610 GeV I, 320-660 GeV I, 500 GeV I, 500 GeV	$\begin{split} m(\widetilde{\chi}_1^2) &< 100 \ GeV \\ m(\widetilde{\chi}_1^2) &= 2 \ m(\widetilde{\chi}_1^2) \\ m(\widetilde{\chi}_1^2) &= 85 \ GeV \\ m(\widetilde{\chi}_1^2) &= 86 \ GeV \\ m(\widetilde{\chi}_1^2) &= 86 \ GeV \\ m(\widetilde{\chi}_1^2) &= 86 \ GeV \\ m(\widetilde{\chi}_1^2) &< 200 \ GeV \ m(\widetilde{\chi}_1^2) - m(\widetilde{\chi}_1^2) \\ m(\widetilde{\chi}_1^2) &= 0 \ GeV \\ m(\widetilde{\chi}_1^2) &= 10 \ GeV \\ m(\widetilde{\chi}_1^2) &= 10 \ GeV \\ m(\widetilde{\chi}_1^2) &= 10 \ GeV \end{split}$	ATLAS CONF-2013-053 ATLAS CONF-2013-007 1208-4305, 1209-2102 ATLAS CONF-2013-048 ATLAS CONF-2013-048 ATLAS CONF-2013-045 ATLAS CONF-2013-037 ATLAS CONF-2013-025 ATLAS CONF-2013-025		
direct	$ \begin{split} \widetilde{\mathbf{L}}_{\mathbf{r}} \widetilde{\mathbf{L}}_{\mathbf{r}} \widetilde{\mathbf{L}}_{\mathbf{r}}, \widetilde{\mathbf{L}}_{\mathbf{r}}^{-1} \widetilde{\mathbf{L}}_{\mathbf{r}}^{\mathbf{r}} \widetilde{\mathbf{L}}_{\mathbf{r}}^{\mathbf{r}} \widetilde{\mathbf{L}}_{\mathbf{r}}^{\mathbf{r}} \widetilde{\mathbf{L}}_{\mathbf{r}}^{-1} \widetilde{\mathbf{r}}_{\mathbf{r}}^{\mathbf{r}} \widetilde{\mathbf{r}}_{\mathbf{r}}^{-1} \widetilde{\mathbf{r}}_{\mathbf{r}}^{\mathbf{r}} \widetilde{\mathbf{r}}_{\mathbf{r}}^{\mathbf{r}}} \widetilde{\mathbf{r}}_{\mathbf{r}}^{\mathbf{r}} \widetilde{\mathbf{r}}_{\mathbf{r}}^{\mathbf{r}}} \widetilde{\mathbf{r}} \widetilde{\mathbf{r}}_{\mathbf{r}}^{\mathbf{r}} \widetilde{\mathbf{r}}_{\mathbf{r}}^{\mathbf{r}} \widetilde{\mathbf{r}}_{\mathbf{r}}^{\mathbf{r}} \widetilde{\mathbf{r}}_{\mathbf{r}}^{\mathbf{r}} \widetilde{\mathbf{r}}_{\mathbf{r}}^{\mathbf{r}} \widetilde{\mathbf{r}} \widetilde{\mathbf{r}}_{\mathbf{r}}^{\mathbf{r}} \widetilde{\mathbf{r}}_{\mathbf{r}}^{\mathbf{r}} \widetilde{\mathbf{r}}_{\mathbf{r}}^{\mathbf{r}} \widetilde{\mathbf{r}}^{\mathbf{r}} \widetilde{\mathbf{r}}_{\mathbf{r}}^{\mathbf{r}} \widetilde{\mathbf{r}}_{\mathbf{r}}^{\mathbf{r}} \widetilde{\mathbf{r}}_{\mathbf{r}}^{\mathbf{r}} \widetilde{\mathbf{r}}_{\mathbf{r}}^{\mathbf{r}} \widetilde{\mathbf{r}}_{\mathbf{r}}^{\mathbf{r}} \widetilde{\mathbf{r}}_{\mathbf{r}}^{\mathbf{r}} \widetilde{\mathbf{r}}^{\mathbf{r}} \widetilde{\mathbf{r}}^{\mathbf{r}} \widetilde{\mathbf{r}}^{\mathbf{r}} \widetilde{\mathbf{r}}^{\mathbf{r}} \widetilde{\mathbf{r}}^{\mathbf{r}}} \widetilde{\mathbf{r}}_{\mathbf{r}}^{\mathbf{r}} \widetilde{\mathbf{r}}^{\mathbf{r}} \widetilde{\mathbf{r}}^{\mathbf{r}} \widetilde{\mathbf{r}}^{\mathbf{r}} \widetilde{\mathbf{r}}^{\mathbf{r}} \widetilde{\mathbf{r}}^{\mathbf{r}} \widetilde{\mathbf{r}}^{\mathbf{r}} \widetilde{\mathbf{r}}^{\mathbf{r}} \widetilde{\mathbf{r}}^{\mathbf{r}}} \widetilde{\mathbf{r}}^{$	20,μ 20,μ 2τ 30,μ 30,μ	0 0 0 0	Yes Yes Yes Yes Yes	20.3 20.3 20.7 20.7 20.7	Î 85-315 GeV X ¹ 1 125-450 GeV X ¹ 1 180-330 GeV X ¹ 1 180-330 GeV X ¹ 1 500 GeV X ¹ 2 500 GeV X ¹ 2 500 GeV	$\begin{split} & m(\widetilde{\chi}_1^2) = 0 \ \text{GeV} \\ & m(\widetilde{\chi}_1^2) = 0 \ \text{GeV}, \ m(\widetilde{\chi}_1^2) = 0.5 (m(\widetilde{\chi}_1^2) + m(\widetilde{\chi}_1^2)) \\ & m(\widetilde{\chi}_1^2) = 0 \ \text{GeV}, \ m(\widetilde{\chi}_1^2) = 0.5 (m(\widetilde{\chi}_1^2) + m(\widetilde{\chi}_1^2)) \\ & = m(\widetilde{\chi}_1^2), \ m(\widetilde{\chi}_1^2) = 0, \ m(\widetilde{\chi}_1^2) = 0.5 (m(\widetilde{\chi}_1^2) + m(\widetilde{\chi}_1^2)) \\ & m(\widetilde{\chi}_1^2) = m(\widetilde{\chi}_1^2), \ m(\widetilde{\chi}_1^2) = 0, \ \text{alleptons closure} \end{split}$	ATLAS-CONF-2013-049 ATLAS-CONF-2013-049 ATLAS-CONF-2013-028 ATLAS-CONF-2013-028 ATLAS-CONF-2013-035 ATLAS-CONF-2013-035		
particles	Direct $\chi_1^+\chi_1^-$ prod., long-lived χ_1^+ Stable \tilde{g}_i , R-hadrons GMSB, stable ζ_i low β GMSB, $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}_i$ long-lived χ_1^0 $\tilde{\chi}_1^0 \rightarrow qq_L (\text{RPV})$	Ο Ο-2 e,μ 2 ο,μ 2 γ 1 ο,μ	1 jet 0 0 0	Yes Yes Yes Yes Yes	4.7 4.7 4.7 4.7 4.4	220 GeV 尊 985 GeV で 300 GeV 菜 230 GeV 록 700 GeV	$\begin{split} 1 < \tau(\widetilde{\chi}_1^2) < 10 \mbox{ ns} \\ & \mbox{$i < \sin(\beta < 20$)$} \\ 0.4 < \tau(\widetilde{\chi}_1^2) < 2 \mbox{ ns} \\ 1 \mbox{ min} < c\tau < 1 \mbox{ min} \\ \mbox{g decoupled} \end{split}$	1210.2852 1211.1597 1211.1597 1304.6310 1210.7451		
RPV	$ \begin{array}{l} LFV \ pp \rightarrow \overline{v}_1 + X, \ \overline{v}_1 \rightarrow e + \mu \\ LFV \ pp \rightarrow \overline{v}_1 + X, \ \overline{v}_1 \rightarrow e + \mu \\ Rinear \ RFV \ CMSSM \\ \overline{x}_1^* \overline{x}_1^* \overline{x}_1^* \rightarrow W \overline{x}_1^*, \ \overline{x}_2^0 \rightarrow e e v + e \mu v \\ \overline{x}_1^* \overline{x}_1^* \overline{x}_1^* \rightarrow W \overline{x}_1^*, \ \overline{x}_2^0 \rightarrow e e v + e \mu v \\ \overline{x}_1^* \overline{x}_1^* \overline{x}_1^* \rightarrow W \overline{x}_1^*, \ \overline{x}_2^0 \rightarrow e e v \\ \overline{y} - e e v \\ \overline{y} - \overline{y} - e e v \\ \overline{y} - \overline{z} $	$\begin{array}{c} 2 o, \mu \\ 1 o, \mu + \tau \\ 1 o, \mu \\ 4 o, \mu \\ 3 o, \mu + \tau \\ 0 \\ 2 o, \mu (SS) \end{array}$	0 7 jets 0 6 jets 0-3 b	Yas Yas Yas Yas Yas	4.6 4.6 4.7 20.7 20.7 4.6 20.7	√; 1.61 TeV √; 1.1 TeV 4; g 1.2 TeV 2; 760 GeV 3; 760 GeV 9 666 GeV 9 880 GeV	$\begin{split} \lambda_{111}^{*} & = 0.10, \ \lambda_{1121} = 0.05 \\ \lambda_{211}^{*} & = 0.10, \ \lambda_{12211} = 0.05 \\ & = 0.03, \ = 0.03, \ u = 0.05, \ u =$	1212.1272 1212.1272 ATLAS.CONF-2012.140 ATLAS.CONF-2013.036 ATLAS.CONF-2013.036 1210.4813 ATLAS.CONF-2013.007		
Other	Scalar gluon WIMP Interaction (D5, Dirac <u>x</u>)	0 0	4 jets mono-jet	Yes	4.6 10.5 TeV	sgluon 100-287 GeV 704 GeV 100-287 GeV 100	incl. limit from 1110.2892 $\mathrm{rrig}_{\mathcal{V}}<80$ GeV, limit of <887 GeV for D8	1210.4826 ATLAS-CONF-2012-147		
	full data	parti	al data	full d	ata	10 1	Mass scale [TeV]			

*Only a selection of the available mass limits on new states or phenomena is shown. All limits guoled are observed minus 1

σ theoretical signal cross section uncertainty.

Department of Physics and Technology

Anna Lipniacka

Backup

pdf-notes for iPad

LHCP 2013

 $\sqrt{s} = 7 \text{ TeV}$

 $\sqrt{s} = 8 \text{ TeV}$

Mass scales [GeV]

CMS Preliminary

For decays with intermediate mass,

1200

 $m_{intermediate} = x \cdot m_{mother} - (1-x) \cdot m_{lsr}$

m(LSP)=0 GeV

x = 0.5

*Observed limits, theory uncertainties not included Only a selection of available mass limits

Probe *up to* the quoted mass limit

Results, direct stops and sbottoms, ATLAS summary

SUSY searches, electroweak production with staus

Chargino-Chargino production-> two taus and missing Et, difficult final state for the LHC.

Results, gluino decays with bottom in final states

CMS

Backup

Mass relations in MSSM+

 $M_{\tilde{q}} \simeq 3 M_2$

 $M_{ ilde{\chi}_1^\pm} \simeq M_2$ (gaugino region)

 $M_{ ilde{\chi}_1^0}\simeq 0.5~M_2$ (gaugino region)

 $M_{\tilde{\nu}}^2 = m_0^2 + 0.77 M_2^2 + 0.5 M_Z^2 cos(2\beta)$

 $M^2_{\tilde{e}_L} = m^2_0 + 0.77 M^2_2 - 0.27 M^2_Z cos(2\beta)$

 $M^2_{\tilde{e}_R} = m^2_0 + 0.22 M^2_2 - 0.23 M^2_Z cos(2\beta)$

A - $\mu/\tan\beta$, A - μ tan β A- μ tan β t τ

 $M_{
m \tilde{q}}^{\ 2} \sim m_0^2 + 10 M_2^2 + O(M_Z^2 cos(2\beta))$

Mixing -> mass splitting for

 \pm (splitting term)

and

Gauge unification

Sfermion unification

Gauginos and squarks are related Can use charginos to set a limit on squarks and sleptons, and sleptons to set limits on charginos stop and , sbottom and stau

SUSY searches with ATLAS and CMS, FPCP2013

