

Status of Higgs Searches at ATLAS and CMS

Junji Tojo Kyushu University On behalf of the ATLAS and CMS Collaborations

FPCP2013 19-24th May 2013 Rio de Janeiro

The ATLAS and CMS Experiments at LHC

- LHC at CERN started its operation of the highest energy *pp* collisions since 2010.
 - 7 TeV in 2010 2011
 - 8 TeV in 2012
- The ATLAS and CMS detectors are general purpose detectors for Higgs, SUSY, Exotics searches and SM physics.
- We report today the status of Higgs searches by ATLAS and CMS.

LHC Run I Delivered Data

- LHC performed very well to deliver a significant amount of data for Higgs searches in Run I.
- Both ATLAS and CMS experiments kept very high data taking efficiency and use ~90% of delivered data for physics.
 - − 2011 : 7 TeV, ~5 fb⁻¹
 - 2012 : 8 TeV, ~20 fb⁻¹
- This allowed us to use a wide range of decay and production channels in Higgs searches.

Pileup : Very Harsh Experimental Condition

- High pileup occurs thanks to very high performance of LHC.
- Essential to continuously improve the trigger, reconstruction, object identification in the very harsh condition.

A $Z \rightarrow \mu\mu$ event with 25 reconstructed vertices

Higgs Productions and Decays

- The production sub-processes
 - Gluon fusion (ggF)
 - Vector boson fusion (VBF, qqH)
 - W/Z-associated production (VH, V=W,Z)
 - Top-associated production (*ttH*)
- The Higgs decays accessible in the experiments.
 - bb : large BR, Yukawa coupling
 - $-\tau \tau$: Yukawa coupling
 - WW: large BR, gauge boson coupling
 - ZZ: high S/B, high mass resolution, gauge boson coupling
 - $\gamma\gamma$: high mass resolution, loop coupling

LHC Higgs Cross Section WG : https://twiki.cern.ch/twiki/bin/view/LHCPhysics/CrossSections

 $H \rightarrow \gamma \gamma$

$H \rightarrow \gamma \gamma$

- Searching for excess in di-photon mass spectrum
- Selection of two high $p_{\rm T}$ isolated photons
 - Both converted and unconverted photons
- EM calorimeter (ATLAS : LAr, CMS : PbWO₄) performance is crucial.
 - Calibration, stability against time and pileup, energy resolution, photon pointing (ATLAS)

 $Z \rightarrow ee$ mass resolution stability

Converted $\boldsymbol{\gamma}$ in front of calorimeter

$m_{\gamma\gamma}$ pileup stability (MC)

$H \rightarrow \gamma \gamma$

- Excess has been observed by both ATLAS and CMS.
 - ATLAS
 - Significance : 7.4 σ (4.1 σ expected)
 - $m_{\rm H} = 126.8 \pm 0.2(\text{stat}) \pm 0.7(\text{syst}) \text{ GeV}$
 - $\sigma/\sigma_{SM} = 1.65 \pm 0.24(stat) \pm 0.22(syst)$
 - CMS (MVA analysis)
 - Significance : 3.2 σ (4.2 σ expected)
 - $m_{\rm H} = 125.4 \pm 0.5(\text{stat}) \pm 0.6(\text{syst}) \text{ GeV}$
 - $\sigma/\sigma_{SM} = 0.78 \pm 0.27$
- Event categorization to enrich *VH* and VBF channels
 - Lepton, $E_{\rm T}^{\rm miss}$, di-jet mass, photons & diphoton $p_{\rm T}$

$H \rightarrow \gamma \gamma$

- Excess has been observed by both ATLAS and CMS.
 - ATLAS
 - Significance : 7.4 σ (4.1 σ expected)
 - $m_{\rm H} = 126.8 \pm 0.2(\text{stat}) \pm 0.7(\text{syst}) \text{ GeV}$
 - $\sigma/\sigma_{SM} = 1.65 \pm 0.24(stat) \pm 0.22(syst)$
 - CMS (MVA analysis)
 - Significance : 3.2 σ (4.2 σ expected)
 - $m_{\rm H} = 125.4 \pm 0.5(\text{stat}) \pm 0.6(\text{syst}) \text{ GeV}$
 - $\sigma/\sigma_{SM} = 0.78 \pm 0.27$
- Event categorization to enrich *VH* and VBF channels
 - Lepton, $E_{\rm T}^{\rm miss}$, di-jet mass, photons & diphoton $p_{\rm T}$

 $H \rightarrow ZZ^* \rightarrow 4l$

$H \rightarrow ZZ^* \rightarrow 4l$

- Searching for excess in four-lepton mass spectrum
 - High mass resolution channel and high S/B
 - BG dominated by SM ZZ, Zbb, Z+jets
- Excellent lepton (electron/muon) performance is required.
 - Energy/momentum scale and resolution
 - High reconstruction and identification efficiency at low $p_{\rm T}$
 - Validation with Z, Y and $J/\psi (\rightarrow 2l)$

11

 $H \rightarrow ZZ^* \rightarrow 4l$

- Both experiments observed a clear peak together with a single-resonant Z.
 - ATLAS
 - Significance : 6.6 σ (4.4 σ expected)
 - $m_{\rm H} = 124.3 \pm 0.6(\text{stat}) \pm 0.4(\text{syst}) \text{ GeV}$
 - $\sigma/\sigma_{\rm SM} = 1.7 \pm 0.4$
 - CMS
 - Significance : 6.7 σ (7.1 σ expected)
 - $m_{\rm H} = 125.8 \pm 0.5(\text{stat}) \pm 0.2(\text{syst}) \text{ GeV}$
 - $\sigma/\sigma_{\rm SM} = 0.91^{+0.30}_{-0.24}$
- Categorization of *gg*F, VBF and *VH* to measure vector boson and fermion coupling in production (to be mentioned later on).
- Z boson pair mass correlation as expected

 $H \rightarrow ZZ^* \rightarrow 4l$

- Both experiments observed a clear peak together with a single-resonant Z.
 - ATLAS
 - Significance : 6.6 σ (4.4 σ expected)
 - $m_{\rm H} = 124.3 \pm 0.6(\text{stat}) \pm 0.4(\text{syst}) \text{ GeV}$
 - $\sigma/\sigma_{\rm SM} = 1.7 \pm 0.4$
 - CMS
 - Significance : 6.7 σ (7.1 σ expected)
 - $m_{\rm H} = 125.8 \pm 0.5(\text{stat}) \pm 0.2(\text{syst}) \text{ GeV}$
 - $\sigma/\sigma_{\rm SM} = 0.91^{+0.30}_{-0.24}$
- Categorization of *gg*F, VBF and *VH* to measure vector boson and fermion coupling in production (to be mentioned later on).
- Z boson pair mass correlation as expected

 $H \rightarrow WW^* \rightarrow l\nu l\nu$

$H \rightarrow WW^* \rightarrow l\nu l\nu$

- Two high $p_{\rm T}$ isolated leptons + large missing $E_{\rm T}$
 - Small opening angle in two leptons
 - Analyses separately in N_{jet} and lepton flavor
 - Searching for excess in m_{ll} and m_{T}
- Backgrounds
 - Many processes are involved and are estimated by data-driven approach as much as possible.
 - Dominated by SM *WW*, *tt*, *Z*+*jets* depending on N_{jet} and lepton flavor

60

50

40

30

20

10

120

M_T (GeV)

 $H \rightarrow WW^* \rightarrow l\nu l\nu$

- Results
 - ATLAS
 - Significance at m_H = 125 GeV : 3.8 σ (3.7 σ expected)
 - $\sigma/\sigma_{\rm SM} = 1.01 \pm 0.31$
 - CMS
 - Significance at m_H = 125 GeV : 4.0 σ (5.1 σ expected)
 - $\sigma/\sigma_{\rm SM} = 0.76 \pm 0.21$

*m*_T [GeV]

 $VH, H \rightarrow bb$

$VH, H \rightarrow bb$

- A very important decay mode to measure Bottom-Yukawa coupling, searching for excess in m_{bb} spectrum
- Three search channels categorized by the vector boson type and decay
 - $WH \rightarrow l\nu bb$
 - $ZH \rightarrow llbb$
 - $ZH \rightarrow \nu\nu bb$
- ATLAS result
 - 95% CL limit at 125 GeV :
 - 1.8 x σ_{SM} (expected 1.9 x σ_{SM})
 - $-\sigma/\sigma_{\rm SM} = -0.4 \pm 0.7 \text{ (stat)} \pm 0.8 \text{ (syst)}$

18

$VH, H \rightarrow bb$

- CMS result
 - Excess was observed above the BG only expectation.
 - Significance at $m_H = 125 \text{ GeV} : 2.1 \sigma$
 - $-\sigma/\sigma_{SM}=1.0\pm0.5$

19

 $H \rightarrow \tau \tau$

$H \rightarrow \tau \tau$

- Higgs search of this decay mode is categorized in the tau-pair decay mode and number of jets.
 - Tau decay : lepton-lepton, lepton-hadron, hadron-hadron
 - Number of jets : 0, 1 (boosted-H w/ high p<sub>T₂₀₀
 jet), 2 (VBF, VH)
 </sub>
- Searching for excess in $m_{\tau\tau}$ mass spectrum.
- ATLAS result
 - No excess (yet)
 - 95% CL limit at 125 GeV :
 - 1.9 x σ_{SM} (expected 1.2 x σ_{SM})
 - $\sigma/\sigma_{\rm SM} = 0.7 \pm 0.7$

$H \rightarrow \tau \tau$

- CMS result
 - Excess was observed above the BG
 - Significance at $m_H = 125 \text{ GeV} : 2.85 \sigma$
 - $-\sigma/\sigma_{\rm SM} = 1.1 \pm 0.4$

Higgs Combination

Combining all the channels together to study the Higgs properties and its consistency with the SM (or its inconsistency due to BSM)

> <u>Mass</u> Signal strength <u>Coupling</u>

Spin

Higgs Combination : Mass

- Both ATLAS and CMS combined high mass resolution channels of $\gamma\gamma$ and $ZZ^* \rightarrow 4l$.
- ATLAS :

 $-m_{\rm H} = 125.5 \pm 0.2({\rm stat}) \pm 0.6({\rm syst}) {\rm GeV}$

• CMS

 $- m_{\rm H} = 125.7 \pm 0.3(\text{stat}) \pm 0.3(\text{syst}) \text{ GeV}$

24

Higgs Combination : Signal Strength

Signal strength at the combined

mass of each experiment

- Combining all the available channels for signal strength (σ/σ_{SM})
- ATLAS :
 - $-\sigma/\sigma_{SM}=1.30\pm0.20$
- CMS
 - $-\sigma/\sigma_{\rm SM}=0.80\pm0.14$

Signal strength consistent in different channels

Higgs Combination : Signal Strength

- Comparison of the production channels in terms of the signal strength of *gg*F+*ttH* (fermion coupling) vs VBF+*VH* (vector boson coupling)
- In both ATLAS and CMS measurements, each production channel is consistent with the SM.

Higgs Combination : Coupling

CMS: 0.73 - 1.00

CMS Preliminary $\sqrt{s} = 7 \text{ TeV}, L \le 5.1 \text{ fb}^{-1} \sqrt{s} = 8 \text{ TeV}, L \le 19.6 \text{ fb}^{-1}$

1.5

- Fermion-vs-Vector couplings •
 - Coupling scale factor κ_i : modified coupling _ of Higgs to a SM particle *i*, normalized to 1 for SM Higgs.
 - A benchmark assuming SM contributions only

Fermion :
$$\kappa_F = \kappa_t = \kappa_b = \kappa_\tau = \kappa_g$$

Vector : $\kappa_V = \kappa_W = \kappa_Z$

W-vs-Z coupling ratio : ٠

Custodial symmetry

 λ_{WZ}

0.5

-2 In $\Lambda(\lambda_{WZ})$

Higgs Combination : Coupling

- BSM contribution in loops
 - BSM in loops of $gg \rightarrow H$ and $H \rightarrow \gamma \gamma$
 - Assuming only SM
 contributions to the total width ¹²
 - Test in κ_g -vs- κ_γ

- BSM contribution in total width
 - Test for invisible or undetectable BSM decays
 - $BR(inv.,undet.) = B_{i,u} = BR_{BSM}$
 - κ_g and κ_γ profiled

Higgs Combination : Coupling

Higgs Combination : Spin

- Spin and parity of the SM Higgs : $J^P = 0^+$ ٠
- Entries Test of different Higgs spin-parity hypotheses in kinematic²⁰ distributions
- $J^{P} = 0^{-}$ (ATLAS/CMS), 1^{\pm} (ATLAS) •

- BDT using kinematic variables in $ZZ^* \rightarrow 4l$

Excluded 0⁻ (97.8% CL), 1⁺ (99.4% CL), 1⁻ (94.0% CL)

• $J^P = 2^+_m$: Spin 2 tensor minimal coupling to SM particles $0^{+}_{-1} = 0.8 - 0.6 - 0.4 - 0.2 - 0$

- ATLAS

Excluded at 99.9% CL

- CMS

Excluded at 99.4% CL for 100% ggF fraction

ATLAS Preliminary

 $\sqrt{s}=7$ TeV: |Ldt = 4.6 fb⁻¹

√s=8 TeV: Ldt = 20.7 fb⁻¹

 $H \rightarrow ZZ^{(*)} \rightarrow 4I$

Background ZZ^(*)

 $-J^{P} = 0^{+}$

10

 $J^{P} = 0^{-}$

Background Z+iets, tr Signal (m_ = 125 GeV)

Conclusion

- LHC Run I in 2010 2012 delivered a significant amount of data to ATLAS and CMS, allowing us to discover a 125 GeV Higgs Boson.
- We are already in a phase to measure the Higgs properties precisely.
 - All the properties are consistent with the SM within the uncertainties.
 - More updates and results on Run I will come.
- In LHC Run II onwards, we will be in another exciting phase for more precise Higgs Physics and BSM search.