Search for light Higgs and Dark Gauge Bosons at e⁺e⁻ colliders

Sven E. Vahsen, University of Hawaii 2013 Conference on Flavor Physics and CP Violation Buzios, Rio de Janeiro, Brazil

Outline

- Physics Motivation
- Experiments / Data Samples

- Results of searches for
 - Light Higgs
 - Dark Gauge Bosons
- Prospects for the future

Introduction and Motivation

- LHC: is energy-frontier tool for exploring TeV-scale physics
- But, many models of physics beyond the standard model feature new **low-mass** particles (MeV-GeV)
- The machines most suitable to search for those particles tend to be low energy, highluminosity e⁺e⁻ colliders
- Examples in this talk
 - Light CP-odd Higgs: A⁰
 - Dark Photon: A' (a.k.a. U)
 - Dark Higgs: h'

Another Higgs Boson?

- Didn't the LHC already discover the "God Particle"?
 So the SM is complete, and we are done with the Higgs, right?
- No we *want* to go beyond the SM. We dream of
 - unifying all forces in nature
 - explaining flavor structure
 - solving hierarchy problem
- And we *have* to go beyond the SM – to explain *observations* not accommodated by it
 - neutrino masses
 - dark energy
 - dark matter

ightarrow We both want to and must go beyond the Standard Model

FPCP2013, Rio deJaneiro, Brazil

Copyrighted Ma

DICK

Beyond the Standard Model

- Beyond the SM, there might be SUSY, and there tend to be additional Higgs Bosons
- Example: Next-to-Minimal Supersymmetric Standard Model (nMSSM)
 - charged: H^+, H^-
 - neutral: H_0^1, H_0^2, H_0^3 (CP-even)
 - neutral: A_0^1, A_0^2 (CP-odd)

A^o can be light. If m _{A0} <2m_b, could have evaded previous searches, yet be accessible at B-factories. Constraints on low-mass nMSSM Higgs sector may be important for understanding LHC discovery.

Searching for a CP-odd light Higgs

- Search for A⁰ in Υ (bottomonium) decays proposed by Dermíšek, Gunion, & McElrath in 2007
- At e+e- colliders, can produce
 - Directly
 - $e^+e^- \rightarrow \Upsilon[1s] \rightarrow \gamma A^0$
 - in cascades $e^+e^- \rightarrow \Upsilon[2s] \rightarrow \Upsilon[1s]\pi^+\pi^$ with $\Upsilon[1s] \rightarrow \gamma A^0$
- BR($\Upsilon \rightarrow \gamma A^0$) in nMSSM can be large up to 10⁻⁴
- Υ[ns] samples at B-factories: ~10⁸

Phys.Rev.D76:051105,2007 arXiv:hep-ph/0612031

Experiments & Data Samples

Upsilon 1S, 2S, 3S samples

- Upsilon(1S,2S,3S) narrow
- Don't decay to BB
- → cleaner event samples, more suitable for background-limited searches for new low-mass states
- Belle, BaBar, CLEO samples complementary

Expected A⁰ Decays in NMSSM

- Preferred decays depend on A⁰ mass & model parameters
- If sufficiently light neutralinos (χ^0) exist, $A^0 \rightarrow \chi^0 \chi^0$ (=missing energy) may dominate
- Otherwise
 - For M_{A°}>2M_τ; ττ and hadronic
 - For lower M_{A°}; μμ and hadronic

Light CP-odd Higgs: Belle and BaBar Searches

- BaBar carried out large number of searches
- No significant signals observed \rightarrow limits set
- Shown at <u>FPCP 2012</u>. Also summarized in arXiv:1209.1143 (B. Echenard)

Mode	Mass range (GeV)	BF upper limit (90% CL)
$\Upsilon(2S,3S) \to \gamma A^0, A^0 \to \mu^+ \mu^-$	$0.21 < m_A < 9.3$	$(0.3 - 8.3) \times 10^{-6}$
$\Upsilon(3S) \to \gamma A^0, A^0 \to \tau^+ \tau^-$	$4.0 < m_A < 10.1$	$(1.5 - 16) \times 10^{-5}$
$\Upsilon(2S, 3S) \to \gamma A^0, A^0 \to \text{hadrons}$	$0.3 < m_A < 7.0$	$(0.1 - 8) \times 10^{-5}$
$\Upsilon(1S) \to \gamma A^0, A^0 \to \chi \bar{\chi}$	$m_{\chi} < 4.5 \mathrm{GeV}$	$(0.5 - 24) \times 10^{-5}$
$\Upsilon(1S) \to \gamma A^0, A^0 \to \text{invisible}$	$m_A < 9.2 \mathrm{GeV}$	$(1.9 - 37) \times 10^{-6}$
$\Upsilon(3S) \to \gamma A^0, A^0 \to \text{invisible}$	$m_A < 9.2 \mathrm{GeV}$	$(0.7 - 31) \times 10^{-6}$

New searches since then

Much activity last year. Most low-hanging fruit picked. Increased emphasis on cascade decays.

Recent A⁰ Searches

 $e^+e^- \rightarrow \Upsilon[1s] \rightarrow \gamma A^0 (\rightarrow \tau^+\tau^-)$

e⁺ Expected signature

(1s)

- mono-energetic photon line
- products of two Tau decays
- Event selection

γ

- two charged tracks only, at least one with positive μ or e ID
- Missing energy
- veto Bremsstrahlung and π^0
- Fit for peak in E_{γ} spectrum
- None observed \rightarrow set limit

Factor ~2 improvement over previous Υ(1S)→ γA⁰(→ τ⁺τ⁻) world limit by CLEO
 Sensitivity scales with 1/sqrt(L), due to large BG. Also see BaBar results p. 14,15.

FPCP2013, Rio deJaneiro, Brazil

Sven Vahsen (U. Hawaii)

$\pi\pi$ -Tagging of Cascades

- If background could be greatly reduced, limits might scale like 1/L instead..
- One promising approach is to utilize cascade decays w/ pion tags

 $\Upsilon[ns] \rightarrow \Upsilon[1s]\pi^+\pi^-; \Upsilon[1s] \rightarrow \gamma A^0$

BaBar limit already published. Belle (preliminary) limit just slightly stronger.

Recent A⁰ Searches (III)

- $\Upsilon[2s] \to \Upsilon[1s]\pi^+\pi^-; \Upsilon[1s] \to \gamma A^0 (\to \tau^+\tau^-)$
- New from Babar: combine limits from different Y resonances by plotting limit on Yukawa coupling x BF
- The Upsilon(3s) analysis helps extend the limit to higher A0 masses

FIG. 4: 90% C.L. upper limits for Yukawa coupling $g_b^2 \times \mathcal{B}(A^0 \to \tau^+ \tau^-)$. Shown are combined *BABAR* results (red solid line), results from this analysis only (dashed green line), the previous *BABAR* measurement [9] (dotted blue line), and results from the CLEO experiment [12] (dot-dashed black line). The shaded vertical bar shows the region around $\chi_b(2P)$ mass excluded from Ref. [9].

FPCP2013, Rio deJan Strongest limit on $A^0 \rightarrow \mu^+ \mu^-$ mode for large m A0

CP-odd Light Higgs limits versus nMSSM

- Assume $BR(A^0 \rightarrow \tau^+ \tau^-) = 1$
- Dashed lines to show highest and lowest upper limits in different A⁰ mass regions

Significant constraints on nMSSM, many models already ruled out

B(Y(1S)→γA⁰)×B(A⁰→τ⁺τ⁻

40E

20

10

CP-odd Light Higgs limits versus nMSSM II

- Repeat for muon final state
- Assume $BR(A^0 \rightarrow \mu^+ \mu^-) = 0.025 0.1$

Q: how many of these models satisfy recent LHC Higgs discovery and latest LHC SUSY limits?

Might be interesting to combine all limits & scan models compatible with LHC results.

The Dark Photon (a.k.a. A' or U Boson)

- New "Dark" U(1) Gauge Boson: A'
 - Interaction with the SM is via kinetic mixing with strength ε
 - acquires a charge εe, and the coupling to SM fermions is characterized by α' = αε²
- Recently, strong renewed interest in MeV – GeV mass region
- Invoked to explain e.g.
 - DAMA/LIBRA
 - Positron excess in cosmic rays

— g-2

- Not a WIMP, but a force carrier in the dark sector
- Many models often also contain a Dark Higgs

Existing Limits

J. Jaeckel and A. Ringwald - arXiv:1002.0329v1

The Dark Photon (a.k.a. A' or U Boson)

$$e^+e^- \rightarrow \gamma A' (\rightarrow e^+e^-, \mu^+\mu^-, \pi^+\pi^-)$$
 etc

- Note: same final states as light Higgs
- Hence light Higgs search results can be re-interpreted as limits on dark photon
- Update in progress at BaBar with full dataset, should cover interesting part of parameter space
- Drawback is large amount of irreducible background

 \rightarrow limit scales as $1/\sqrt{\int L dt}$

BABAR 40 fb⁻¹ BABAR 500 fb⁻¹ Belle II 50 ab⁻¹

FPCP2013, Rio deJaneiro, Brazil

Projected Belle II Reach

- Belle II could improve limit on ϵ^2 by factor 10-100, depending on BG level
- The fixed target experiments only need to run for ~weeks
- However, Belle II searh would have unique mass reach, and low incremental cost

Dark Photon and Dark Higgs (II

Analysis ongoing at Belle – box opening for first channels last week

923 fb⁻¹

- Event count consistent w/ BG expectation
 - ~ factor 1.5-2 improvement in limit over BaBar as expected from luminosity scaling

Conclusion

- Much activity, but nothing found to date...
- Light-CP odd Higgs
 - most, but not all, BaBar/Belle samples exploited
 - Since BG limited, further progress at Belle II may be slow. Pion-tagging the way forward?
- Dark Photon and Dark Higgs searches
 - a number of BaBar/Belle results still expected
 - In the next years, expect more sensitive dark photon searches at fixed-target experiments and Belle II to probe very interesting parts of parameter space

Or to say it like last year's speaker...

Either light higgses, dark gauge bosons, etc don't really exist...

BaBar & Belle, digging for light particles

...Or we just need to dig deeper to find 'em

SuperKEKB ?

BACKUP SLIDES

Acknowledgements

- Material received/taken from
 - Igal Jaegle
 - Jamal Rorie
 - Bertrand Echenard
 - XinChou Lou
 - Peter Krizan
 - Tom Browder
 - G. Calderini
- \rightarrow Thank you!

SELECTION CRITERIA

Jamal Rorie

$$\begin{split} \Upsilon(1S) &\rightarrow \gamma A^0; A^0 \rightarrow \tau^+ \tau^- \\ \tau^- &\rightarrow ``l \text{ prong''} \rightarrow e^- \bar{\nu_e} \nu_\tau \text{ or } \mu^- \bar{\nu_\mu} \nu_\tau \text{ or } \pi^- \nu_\tau \text{ or } \rho \nu_\tau \text{ or } a_1 \nu_\tau \\ \tau^+ &\rightarrow ``lepton'' \rightarrow e^+ \nu_e \bar{\nu_\tau} \text{ or } \mu^+ \nu_\mu \bar{\nu_\tau} \end{split}$$

and charge conjugates

Thursday, February 21, 13

FITTING TECHNIQUE

We have a data sample, now we search the photon spectrum for a monochromatic peak against the background

- Background PDF
 - Background can't be fit with single simple analytic function
 - Fit each region independently
 with 3rd order polynomials
- Signal PDF
 - Monochromatic photon signal can be fit with a Gaussian
 - σ determined from interpolation of signal MC fits
- Combined PDF
 - · Extended Maximum Likelihood Fit
 - Fit window is ±6σ about central value of peak
 - All fit parameters are fixed EXCEPT FOR YIELDS

Thursday, February 21, 13

- Fit combined PDF from 0.15 GeV to 4.0 GeV
- · Step sizes are dependent upon detector resolution

Sven Vahsen (U. Hawaii)

Jamal Rorie

Jamal Rorie

CORRECTIONS & SYSTEMATICS

- Need a scale factor, ϵ_{cuts} , to correct for selection cut efficiency
- Generated signal MC for a range of A⁰ masses
- Applied selection criteria.
- Find events left, fit with 4th order polynomial

Thursday, February 21, 13

RESULTS

- Signal detection
 - Sought points with $\sigma_{significance} > 3$
 - Step size less than detector resolution, signal should produce several consecutive points with high significance
 - No such signal found
 - Set upper limit
- BF 90% CL UL
 - 4.0x10⁻⁶ to 4.5x10⁻⁵
- A⁰ Mass Range
 - 3.6GeV to 9.3GeV

Using $B_{\Upsilon(1S)\to\gamma A^0} \times B_{A^0\to\tau\tau} = \frac{nsig}{\epsilon_{cuts}N_{\Upsilon(1S)}B_{\tau\to l\nu_l\nu_\tau}B_{\tau\to 1prong}}$

Thursday, February 21, 13

9

32

Jamal Rorie

Thursday, February 21, 13

Jamal Rorie

Introduction and Event Selection

Search for light Higgs (A⁰) in the following modes:

- 1. $Y(2S) \rightarrow \gamma A^0; A^0 \rightarrow \mu^+ \mu^-$
- 2. $Y(2S) \rightarrow \gamma A^0$; $A^0 \rightarrow \tau^+ \tau^- (\tau \tau \rightarrow e\mu)$
- Y(2S)→Y (1S) π⁺ π⁻; Y(1S)→γA⁰; A⁰→ μ⁺ μ⁻
- Y(2S)→Y (1S) π⁺ π⁻; Y(1S)→γA⁰; A⁰→ τ
 ⁺τ⁻ (ττ→eµ)
- The decay modes would be denoted by their final state in the following.
- Expect the modes with ππ tag could give stronger upper limit.
- Will check cos(y,lep). Might be included into event selection.

Terms	$\gamma \mu^+ \mu^-$	$\gamma \tau^+ \tau^-$	$\pi^+\pi^-\gamma\mu^+\mu^-$	$\pi^+\pi^-\gamma\tau^+\tau^-$	
		$(\tau \tau \rightarrow e \mu)$		$(\tau \tau \rightarrow e\mu)$	
TauPair skim	applied				
dr	$< 0.5 \ {\rm cm}$				
dz	< 3.0 cm				
$Prob(K;\pi)$ for π	< 0.4				
eid	> 0.8				
μ id	> 0.8				
E_{γ} in $\Upsilon(2S)$'s CM	$> 0.1 \mathrm{GeV}$	$> 0.1 \mathrm{GeV}$	×	×	
E_{γ} in $\Upsilon(1S)$'s CM	x	X	> 0.1 GeV	> 0.1 GeV	
number of $\mu^+ = 1$,	applied	×	applied	x	
$\mu^{-} = 1$					
number of $e^+\mu^-$ pair	×	applied	×	applied	
$= 1$ or $e^-\mu^+$ pair $= 1$					
number of charged	=2	=2	×	×	
track					
total charge	= 0	=0	x	x	
$\cos(\gamma, \mu^+\mu^-)$	< -0.95	×	х	x	
missing energy (GeV)	×	> 2.0	×	> 2.0	
missing polar angle in CM (degree)	×	$30 \sim 150$	×	$30 \sim 150$	
$m(\mu\mu\gamma)$ (GeV)	$9.4 \sim 10.4$	X	×		
$m(\pi\pi\mu\mu\gamma)$ (GeV)	×	×	$9.6 \sim 10.4$	x	
$\Delta m = m(\pi \pi \mu \mu \gamma) -$	×	×	$0.55\sim 0.57$	×	
$m(\mu\mu\gamma)$ (GeV)					
recoil mass of $\pi^+\pi^-$ (GeV)	×	×	×	$9.32 \sim 9.60$	

Thursday, February 21, 13