

The B ightarrow au u and $B ightarrow ar{D}^{(*)} au^+ u$

measurements

A. Bożek, INP Kraków for Belle

- Introduction Physics motivations
- e Experimental methodology
- The $B \rightarrow \tau \nu$ measurements
- The $B \rightarrow D^{(*)} \tau \nu$ measurements

Physics motivations

• Decays $B^+ \to \tau^+ \nu$ and $B \to \overline{D}^{(*)} \tau^+ \nu$ sensitive to new scalar fields (e.g. charged Higgs boson) : New Physics at the level of tree diagrams.

Physics motivations

• Decays $B^+ \to \tau^+ \nu$ and $B \to \overline{D}^{(*)} \tau^+ \nu$ sensitive to new scalar fields (e.g. charged Higgs boson) : New Physics at the level of tree diagrams.

$B^+ \to \tau^+ \nu$

• SM branching ratio
$$\mathcal{B}(B^+ \to \ell^+ \nu_l) = \frac{G_F^2}{8\pi} f_{B^+}^2 |V_{ub}|^2 \tau_{B^+} M_{B^+} m_\ell^2 (1 - \frac{m_\ell^2}{M_{\rho^+}^2})^2.$$

- Depends on: B meson decay constant f_B from lattice and $|V_{ub}|$ from measurement.
- helicity suppressed.

$B^+ \rightarrow \tau^+ \nu$ - New Physics effect

Potentially sensitive to New Physics effects

•
$$\mathcal{B}(B^+ \to I^+ \nu_I)_{2\mathrm{HDM}} = \mathcal{B}(B^+ \to I^+ \nu_I)_{\mathrm{SM}} \times r_H$$

•
$$r_H = (1 - m_B^2 \frac{\tan^2 \beta}{m_H^2})^2.$$

Physics motivations

• Decays $B^+ \to \tau^+ \nu$ and $B \to \overline{D}^{(*)} \tau^+ \nu$ sensitive to new scalar fields (e.g. charged Higgs boson) : New Physics at the level of tree diagrams.

$\overline{B} \to \overline{D}^{(*)} \tau^+ \nu$

- larger numbers of observable in respect to $B^+ o au^+
 u$
- new observable: τ and D^* polarization, q^2 distributions, lepton momentum.
- relatively small hadronic uncertainties (few % in SM frame)

R - BF ratios

$$R(D^{(*)}) \equiv \frac{\mathcal{B}(B \to \bar{D}^{(*)}\tau^+ \bar{\nu}_{\tau})}{\mathcal{B}(B \to \bar{D}^{(*)}\ell^+ \bar{\nu}_{\ell})}$$

$B^+ \rightarrow \tau^+ \nu$ and $B \rightarrow \overline{D}{}^{(*)} \tau^+ \nu$ decays in 2HDM-II

$$\mathcal{B} = \mathcal{B}\Big|_{SM} \times r_{H}$$

$$r_{H}^{B \to \tau \nu} = \left(1 - \frac{m_{B}^{2}}{m_{H}^{2}} \tan^{2}\beta\right)^{2} \qquad r_{H}^{B \to \bar{D}^{(*)}\tau \nu} = R/R_{SM} = 1 + 1.5Re(C_{NP}^{\tau}) + 1.1|C_{NP}^{\tau}|^{2}$$

$$C_{NP}^{\tau} = -\frac{m_{B}m_{\tau}}{m_{H}^{2}\pm} \frac{\tan^{2}\beta}{1 + \varepsilon_{0} \tan\beta}$$

The $B \to \tau \nu$ and $B \to \bar{D}^{(*)} \tau \nu$ are sensitive to different range of $tan\beta/m_{H^{\pm}}$

W. S. Hou, PRD 48, 2342 (1993)

J.F. Kamenik, F.Mescia, PRD 78, 014003 (2008)

Experimentally challenging

• The reconstruction of $B_{tag} \rightarrow tags \ a \ B\overline{B}$ events \rightarrow reduce combinatorial and continuum $(q\overline{q}, q = u, d, s, c)$ backgrounds.

 The reconstructed B_{tag} allows us to obtain kinematics constraints on B_{sig}(B → D^(*)τν) momentum: p
_{sig} = −p
_{tag} ⇒ p_B

small reconstruction efficiency (below 10⁻²)

Different approach for B_{tag} reconstructions

Exclusive analysis \rightarrow Signal extraction from signal side variable. - historic nomenclature used in that talk.

K. Hara et al., [Belle Collaboration], Phys. Rev. D 82, 071101 (2010)

A. Matyja et al., [Belle Collaboration], Phys. Rev. Lett. 99, 191807 (2007), M.Rozanska, "Studies of B decays with missing energy", SUSY07

Andrzej Bożek @ FPCP 2013 Buzios

The $B \to \tau \nu$ and $B \to \bar{D}^{(*)} \tau^+ \nu$ measurements

Exclusive B_{tag} reconstruction

First we find an event with reconstructed B_{tag} then we check if the rest of the tracks are consistent with signal hypothesis.

$B^+ \rightarrow \tau^+ \nu$ measurements

BABAR

- based on 459 M BB,
- counting method used,

•
$$\mathcal{B} = (1.7 \pm 0.8 \pm 0.2) \times 10^{-4}$$
.

Belle PRD 82, 071101(R) (2010) BABAR PRD 81, 051101(R) (2010)

$B^+ ightarrow au^+ u$ by hadronic tag - Belle

Belle

- based on 772 M BB (full data sample),
- four τ decay channels: eνν, μνν, πν, ρν;
- improved tracking,
- improved tagging (NeuroBayes),
- K_L veto added,
- better understanding of the peaking background,
- signal extracted from 2D fit in $(E_{\text{ECL}}, M_{\text{miss}}^2)$,
- $\mathcal{B} = (0.72^{+0.27}_{-0.25} \pm 0.11) \times 10^{-4}$.

Belle PRL 110, 131801 (2013)

$B^+ ightarrow au^+ u$ by hadronic tag - BABAR

MeV Belle 300 based on 468 M BB (full data 100 sample), 250 • four τ decay channels: $e\nu\nu$, $\mu\nu\nu$, 200 S $\pi\nu, \rho\nu;$ Signal (3.8_o) improved tagging efficiency -larger set of hadronic tag modes 150 ×2 in respect to previous tagging method 100 • $\mathcal{B} = (1.83^{+0.53}_{-0.49} \pm 0.24) \times 10^{-4}$. 50 O Ό 0.2 0.4 0.6 0.8

BABAR arXiv: 1207.0698

E_{extra} [GeV]

$B^+ ightarrow au^+ u$ measurements summary

Naive world average $\mathcal{B} = (1.15 \pm 0.23) \times 10^{-4}$.

$B^+ ightarrow au^+ u$ measurements summary

Naive world average $\mathcal{B} = (1.15 \pm 0.23) \times 10^{-4}$.

$B \rightarrow D^{(*)} \tau \nu$ measurements

Inclusive B_{tag} reconstruction

First we reconstruct B_{sig} then the left over tracks and clusters in calorimeter are used to B_{tag} reconstructions.

In Principe less constraints on signal side:

- less model dependent constraints on signal side distributions or,
- kinematic distributions from fits in M_{tag} bins

A. Matyja et al., [Belle Collaboration], Phys. Rev. Lett. 99, 191807 (2007)

Inclusive vs Exclusive analysis

Exclusive

- lower B_{tag} efficiency,
- large number the D^(*) decays channels,
- the τ decays limited to leptonic decays $\rightarrow \ell \nu \nu$,
- the signal extraction based on B_{sig} variables.

The latest BABAR analysis is called *inclusive* \rightarrow higher tagging efficiency, \rightarrow reconstruction starts from B_{sig}

Inclusive

- higher B_{tag} efficiency,
- only the cleanest D^(*) decays are used,
- the $\tau^+ to \rightarrow \ell^+ \nu \nu$, $\pi^+ \nu$ and $\rho \nu$ decay channels are included,
- the signal extraction based mostly on B_{tag} variables.

Unfortunately Belle has not yet shown data based on full data set.

All the Belle data below comes from published or presented earlier results

Signal extraction in the $B \to \overline{D} \tau^- \nu$ and $B \to \overline{D}^* \tau^- \nu$ channels.

Branching fraction measurement

SM expectation

(S.Fajfer, J.Kamenik, I.Nisandzic, PRD 85, 094025 (2012))

private average of Belle results

R measurement

SM expectations: (S.Fajfer, J.Kamenik, I.Nisandzic, PRD **85**, 094025 (2012))

 $R(D) = 0.297 \pm 0.017, R(D^*) = 0.252 \pm 0.003$

R measurement

SM expectations: (S.Fajfer, J.Kamenik, I.Nisandzic, PRD **85**, 094025 (2012))

 $R(D) = 0.297 \pm 0.017, R(D^*) = 0.252 \pm 0.003$

BABAR SM deviations

- R(D

 ^{*}) 2.7σ
- $R(\overline{D}) 2.0\sigma$
- $R(\overline{D}^{(*)})$ 3.4 σ

R measurement

SM expectations: (S.Fajfer, J.Kamenik, I.Nisandzic, PRD 85, 094025 (2012)) $B \rightarrow D^{\circ} \tau^{*} v$ 🗕 🔁 $R(D) = 0.297 \pm 0.017, R(D^*) = 0.252 \pm 0.003$ + 😽 BABAR SM deviations - average $B \rightarrow D \tau^+ v_\tau$ R(D
^{*}) 2.7σ SM R(D) 2.0σ PRD 85, 094025 (2012) • $R(\overline{D}^{(*)})$ 3.4 σ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 B(D(*)) private average of Belle results Belle average SM deviations R(D^{*}) 3.0σ Belle and BABAR average deviation from SM • $R(\overline{D}) 1.4\sigma$ R(D^{*}) 3.8σ • $R(\overline{D}^{(*)})$ 3.3 σ R(D) 2.4σ • $R(\overline{D}^{(*)})$ 4.8 σ

Observed deviations between observable and SM expectations for $R_{{\cal D}(\ast)}$ are not only due to improvement of experimental results but also reduction theoretical uncertainties.

LQCD expectations . A. Bailey, et al., Phys. Rev. Lett. 109, 071802, (2012), arXiv:1206.4992 [hep-ph].

 $R(D) = 0.316 \pm 0.012 \pm 0.007$

Comparison with 2HDM-II

Comparison with 2HDM-II

$\int_{1}^{1} \int_{0}^{2} \int_{0}^{1} \int_{0$

included in that plot. Small for *exclusive* analysis.

Comparison with 2HDM-II

Belle results $(\widehat{P}_{g}) = 0.8$ 0.6 0.2 0.2 0.2 0.4 0.2 0.6 0.6 SM 0.2 0.6 SM 0.6 SM 0.8 SM 0.2 0.8 SM 0.2 0.6 0.8 SM 0.2 0.6 0.8 SM 0.2 0.6 0.8 SM 0.2 0.6 0.8 SM 0.8 SM 0.8 SM 0.2 0.8 SM 0.2 0.8 SM 0.2 0.8 SM 0.8 SM SM 0.8 SM SMSM

Acceptance variation with tan β/m_H^+ was not included in that plot. Small for *exclusive* analysis.

- R(r_H) in B⁺ $\rightarrow \tau^+ \nu$, B $\rightarrow \bar{D} \tau^+ \nu$ and B $\rightarrow \bar{D}^* \tau^+ \nu$ suggest different values of $tan\beta/m_{H^{\pm}}$
 - $r_H \rightarrow \approx 0 0.1 \text{ or } \approx 0.25 \text{ GeV}^{-1}$
 - $R_D \rightarrow \approx 0.4 0.5 \text{ GeV}^{-1}$

•
$$R_{D^*} \rightarrow \approx 0.7 - 0.9 \text{ GeV}^{-1}$$

 The BABAR collaborations excludes 2HDM-II charged Higgs at 99.8% confidence level for any value of tan\u03b3/m_H± and points on 2HDM-III.

Can we measure kinematic distributions?

q^2 distributions

• large acceptance correction \rightarrow see *BABAR* PRD paper:

• contribution from $B \rightarrow \bar{D}^{**}(\tau^+/\ell^+)\nu$

	$B ightarrow ar{D} au^+ u$	$B ightarrow ar{D}^* au^+ u$
SM	83.1%	98.8%
$taneta/m_H^\pm=0.30{ m GeV}^{-1}$	95.7%	98.9%
$taneta/m_{H}^{\pm}=0.45 { m GeV}^{-1}$	0.4%	97.9%

J. P. Lees et al. [BABAR Collaboration], arXiv:1303.0571 [hep-ex], submitted to Phys. Rev. D.

Differential distributions for ℓ/h and $D^{(*)}$ momentum

Belle PRD 82 (2010) BABAR PRL 109 (2012)

Summary

- $B \rightarrow \tau \nu$ and $B \rightarrow D^{(*)} \tau \nu$ are sensitive tool for search NF,
- Recent $B \rightarrow \tau \nu$ results have weakened the tension with other measurements (CKM fits) $B \rightarrow \tau \nu$,
- The R^(*)/BF measurement shows discrepancies from SM expectations (especially for B → D^{*}τν decays) → result improvement but also theory errors reduced.
- Current measurement are inconsistent with 2HDM-II models, complementary channels are pointing for different tanβ/m_{H±} values(problem for MSSM ?)
- We can measure some kinematic distributions for $B \to D^{(*)} \tau \nu$ based on B- factory data sets, q^2 , $|p_\ell|$, $|p_D^{(*)}|$.

The new results from Belle, based on full statistic, is due soon.

Belle II - run starts in2016

- It is important to improve the measurement of $B \to \tau \nu$ and $B \to D^{(*)} \tau \nu$ up to the level of few %.
- Improved measurement of kinematic distributions for $B \to D^{(*)} \tau \nu$ would allow to probe New Physics scenarios by looking to the correlations between different observables,

Backup

Tau polarization measurement

Analysis	B [%]	R	significance
	$B^+ ightarrow ar{D}^{*0} au^+ u_ au$		
Belle incl.	$2.12^{+0.28}_{-0.27} \pm 0.29$	$0.372^{+0.049}_{-0.047} \pm 0.057(*)$	
Belle excl.	$2.68 + 0.63 + 0.34 \pm 0.09(*)$	$0.47 \stackrel{+0.11}{_{-0.10}} \stackrel{+0.06}{_{-0.07}}$	
Belle average	$2.24 \pm 0.29 \pm 0.15$	$0.393 \pm 0.051 \pm 0.027$	
BABAR	$1.71 \pm 0.17 \pm 0.13$	$0.322\pm 0.032\pm 0.022$	
WA	-	0.344 ± 0.036	
	$B^0 ightarrow D^{*-} au^+ u_ au$		
Belle incl.	$2.02^{+0.40}_{-0.37} \pm 0.37$	$0.408^{+0.081}_{-0.075} \pm 0.077(*)$	
Belle- excl.	$2.38 + 0.69 + 0.30 \pm 0.05(*)$	0.48 + 0.14 + 0.06	
Belle average	$2.24 \pm 0.29 \pm 0.15$	$0.393 \pm 0.051 \pm 0.027$	
BABAR	$1.74 \pm 0.19 \pm 0.12$	$0.355 \pm 0.039 \pm 0.021$	
WA	-	0.372 ± 0.039	
	$B^+ ightarrow ar{D}^0 au^+ u_ au$		
Belle incl.	$0.77 \pm 0.22 \pm 0.12$	$0.341^{+0.097}_{-0.097} \pm 0.063(*)$	
Belle excl.	$1.58 \stackrel{+0.43}{_{-0.41}} \stackrel{+0.25}{_{-0.20}} \pm 0.08(*)$	$0.70^{+0.19}_{-0.18}$ $+0.11$	
Belle average	$0.95 \pm 0.21 \pm 0.08$	$0.420 \pm 0.091 \pm 0.034$	
BABAR	$0.99 \pm 0.19 \pm 0.13$	$0.429 \pm 0.082 \pm 0.052$	
WA	-	0.425 ± 0.069	
	$B^0 ightarrow D^- au^+ u_ au$		
Belle excl.	$1.04 {}^{+0.48}_{-0.41} {}^{+0.13}_{-0.11} \pm 0.06$	$0.48 \stackrel{+0.22}{-0.19} \stackrel{+0.06}{-0.05}(*)$	
BABAR	$1.01 \pm 0.18 \pm 0.12(*)$	$0.469 \pm 0.084 \pm 0.053$	
WA	-	0.471 ± 0.090	

B factorie: Belle i BABAR

Accumulate Luminosity

1998/1 2000/1 2002/1 2004/1 2006/1 2008/1 2010/1 2012/1

Charged Higgs search

