

Results from T2K

Alex Finch Lancaster University ND280 T2K

Contents

- T2K
 - Overview
 - Tokai
 - Kamioka
- Neutrino Oscillations
- Results
 - Muon neutrino disappearance
 - Electron neutrino appearance
 - Charged Current inclusive cross section
- Future Prospects
 - Current Run
 - Future Running

T2K Overview

Physics Goals

T2K - Long Baseline Accelerator based Neutrino Experiment

- Observe v_e appearance and measure θ_{13}
- Observe v_{μ} disappearance and measure θ_{23}
- Measure v cross sections
- Search for exotic neutrinos

Charge Current Quasi-Elastic

What we'd like:

What we have:

Nucleon changes but doesn't break up.

"Final State Interactions" confuse the picture

Buzios, Rio , Brasil 2013

Super Kamiokande ("SK")

(c) Super-Kamiokande Collaboration

192

500

1000 1500

Times (ns)

2000

ND280 Events

Neutrino mixing (PMNS) matrix is:

$$\begin{pmatrix} \nu_e \\ \nu_\mu \\ \nu_\tau \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \\ \nu_3 \end{pmatrix}$$

$$0 \quad \sqrt{\frac{1}{6}} \quad \sqrt{\frac{1}{3}} \quad \sqrt{\frac{1}{2}} \quad \sqrt{\frac{2}{3}} \qquad 1$$

Slide from P. Litchfield

$$\Delta m_{21}^{2} \equiv \Delta m_{sol}^{2} = 7.6 \times 10^{-5} \text{ eV}^{2}$$
$$|\Delta m_{31}^{2}| \approx |\Delta m_{32}^{2}| \equiv \Delta m_{atm}^{2} = 2.4 \times 10^{-3} \text{ eV}^{2}$$
$$\Theta_{13} = 9^{\circ}$$
$$\Theta_{12} = 34^{\circ}$$
$$\Theta_{23} = 45^{\circ}$$

LANCASTER

Angle parameterisation

The mixing matrix is commonly parameterised as the product of two rotations and a unitary transformation. Writing $s_{ij} = \sin \theta_{ij}$, and $c_{ij} = \cos \theta_{ij}$:

T2

$$\begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix}$$

The choice of parameterisation is convenient as the **solar** and **atmospheric** disappearance amplitudes can be approximated as functions of θ_{12} and θ_{23} , respectively. This approximation only works to the extent that the third angle θ_{13} is small. Slide from P. Litchfield

In the standard parameterisation, it turns out that $U_{e3} = \sin \theta_{13} e^{-i\delta}$, and therefore $\sin \theta_{13} = |U_{e3}|$.

The value of $\sin \theta_{13}$ particularly significant because a zero element in the mixing matrix would have eliminated the possibility of (KM-mechanism) leptonic CP violation.

The future program of neutrino physics is strongly dependent on the size of θ_{13} .

To study, need channels involving $\langle v_e | v_3 \rangle$. The most accessible are $\bar{\nu}_e \rightarrow \bar{\nu}_e$ (reactor) and $\nu_\mu \rightarrow \nu_e$ (accelerator) at first 'atmospheric' maximum (L/km ~ 0.5 × E/MeV)

Slide from P. Litchfield

Use event reweighting to model effect of varying parameters.

Use event reweighting to model effect of varying parameters.

NA61 / SHINE

NA61 is a large acceptance hadron spectometer with excellent capabilities for momentum, charge and mass measurements. The experimental facility consists of <u>Time Projection Chambers</u>, <u>Time</u> of Flight and <u>Projectile Spectator</u> Detectors. **Physics goals**

ANCASTER

... Hadron production reference measurements for <u>neutrino</u> (<u>T2K</u>) and <u>cosmic-ray</u> (<u>Pierre Auger Observatory</u>, KASCADE-Grande and <u>KASCADE</u>) experiments. ...

Use event reweighting to model effect of varying parameters.

Use event reweighting to model effect of varying parameters.

What are ND280 Inputs?

T2

LANCASTER UNIVERSITY

Use event reweighting to model effect of varying parameters.

Muon neutrino disappearance

Overview

- Observe muon neutrinos from J-PARC in Super Kamiokande
- Predict number using beam MC constrained by ND280 measurements
- Fit reconstructed neutrino energy spectrum and thus
- Measure $sin^2 2\theta_{23}$, and Δm_{32}

uzias, Rio, Brasil 2013

Muon Neutrino Disappearance

Count number of muon neutrino events in Super Kamiokande

RUN1+2+3 3.010x10 ²⁰ POT	Data	MC Expectations w/ oscillation				
		MC total	ν _μ +ν _μ CCQE	v _µ +v _µ CC non-QE	v _e +v _e CC	NC
True FV	-	299.35	49.67	109.50	8.62	131.56
FCFV	174	168.86	37.60	82.80	8.24	40.23
One-ring	88	85.65	35.27	33.67	5.28	11.43
µ-like	66	69.67	34.58	31.61	0.04	3.43
р _µ >200MeV/c	65	69.25	34.34	31.54	0.04	3.33
N _{dcy-e} <=1	58	59.86	33.90	22.73	0.04	3.19
Efficiency [%]	- /	20.0	68.2	20.8	0.4	2.4
FPCP	95% CC – of which 64% CCQE					

Muon Neutrino Disappearance

Plot spectrum as a function of reconstructed v energy. Fit for oscillation parameters.

Oscillation Fitting

New MINOS result: combined fit of beam and atmospheric results http://uk.arxiv.org/abs/1304.6335 8th May 2013

0.85

0.90

 $sin^2(2\theta)$

0.95

1.00

3.5

3.0

2.5

0.80

 $\Delta m^2 | / (10^3 eV^2)$

Latest MINOS Result Overlaid on T2K

TZRElectron Neutrino Appearance

Recent history

- 2011 result
 - Observed 6 events
 - (Run 1 and 2 data before earthquake 11 March 2011)
 - $0.03 < sin^2 2\theta_{13} < 0.28$
 - for δ CP=0 and normal hierarchy.
- Reactor results
 - 29 Dec 2011 Double Chooz 0.017 < $\sin^2 2\theta_{13}$ < 0.16. (90% CL)
 - 8 March 2012 Daya Bay announces 5.2 σ measurement of θ_{13}
 - $sin^2 2\theta_{13} = 0.092 \pm 0.016 \text{ (stat)} \pm 0.005 \text{ (syst)}$
 - Confirmed 1 month later by RENO
 - See talk by Kwong Lau
- Our new result
 - Run1 + Run2 + Run 3

Electron Neutrino

Candidate Selection (continued)

LANCASTER UNIVERSITY

v_e candidate #11

32

Havor Physics & CP / Iolation FPCP Buzios. Rio. Brasil 2013

 $0.038 < \sin^2 2\theta_{13} < 0.212$ (90%CL)

 $0.030 < \sin^2 2\theta_{13} < 0.175 (90\% CL)$

CC Inclusive Cross Section

36

Efficiency = 50% Purity = 88%

> Main backgrounds: Events not in FGD1 Neutral current

- ND280 Run1 and 2 data
- Detect v_{μ} in FGD1 of ND280
 - Good Data Quality
 - >0 -ve track in TPC
 - Track starts in FGD1
 - dE/dx of -ve track consistent
 with μ
 - No activity upstream of FGD
- Unfold to true μ p/ θ bins
- Convert to differential cross section

CC Inclusive

Results (Binned)

ANCASTER NIVERSITY

CC Inclusive

 $<\sigma_{cc}>_{\phi}=(6.93\pm0.13(stat)\pm0.85(syst)x10^{-39}cm^{2}/nucleon$

Future Prospects

Current Run / Near Term

- More data
 - Plan is to collect sufficient data before long shutdown for a 5 σ measurement of θ_{13}
- Improved reconstruction
- More ND280 cross section measurements
- Which will all help to produce more accurate measurement.

Future Prospects

Future Runs / Long Term

- More of the above and..
- Anti neutrino running?
- Synergies with NOVA...
- Possible sensitivity to CP violation.

NOVA:

Long baseline experiment Fermilab -> Ash River (810 km) => Larger matter effects than T2K Off Axis E=2GeV First beams now (Spring 2013) Detector completed this time next year Expect 5 σ on θ_{13} by May 2014

- T2K is well on the way to achieving its original Physics Goals
 - Electron neutrino appearance
 - Muon neutrino disappearance
 - Neutrino cross sections
- Lots more to come in the next few years

BACKUP

TZR $P(\nu_{\mu} \rightarrow \nu_{e}) \text{ and } P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})$

with matter effects

T2K might be able to measure δ_{CP} if it is close to $3\pi/2$ (normal hierarchy) or $\pi/2$ (inverted hierarchy). However for most values of δ_{CP} , its effects are entangled with those of the mass hierarchy.

ANCASTER

NOvA might be able to measure δ_{CP} if it is between π - 2π (normal hierarchy) or 0- π (inverted hierarchy).

Note that, for $\delta_{CP} = 0$, $P(\nu_{\mu} \rightarrow \nu_{e}) \neq P(\nu_{\mu} bar \rightarrow \nu_{e} bar)$. This is due to matter effects.

 $|\Delta m_{32}^2| = 2.32 \times 10^{-3} \text{ eV}^2$

Pull []

Results in 2012: veflux

