Sin2β Measurement Backup R. de Sangro

Sin2_β LHCb

Systematics

Table 1

Summary of systematic uncertainties on the CP parameters.

Origin	$\sigma(S_{J/\psi K_{\rm S}^0})$	$\sigma(C_{J/\psi K^0_{S}})$
Tagging calibration	0.034	0.001
Tagging efficiency difference	0.002	0.002
Decay time resolution	0.001	0.002
Decay time acceptance	0.002	0.006
Background model	0.012	0.009
Fit bias	0.004	0.005
Total	0.036	0.012

Sin2_β LHCb

Julian Wishahi | Δm_s , Δm_d , and sin2 β @LHCb | 13th CKM Workshop, WG IV | Sep. 29th 2012

Sin2ß Belle

TABLE II. *CP* violation parameters for each $B^0 \rightarrow f_{CP}$ mode and from the simultaneous fit for all modes together. The first and second errors are statistical and systematic uncertainties, respectively.

CP parameters	for	individual	modes
---------------	-----	------------	-------

Decay mode	$\sin 2\phi_1 \equiv -\xi_f \mathcal{S}_f$	\mathcal{A}_{f}
$J/\psi K_S^0$	$+0.670 \pm 0.029 \pm 0.013$	$-0.015 \pm 0.021^{+0.045}_{-0.023}$
$\psi(2S)\tilde{K}_{S}^{0}$	$+0.738\pm 0.079\pm 0.036$	$+0.104 \pm 0.055 ^{+0.047}_{-0.027}$
$\chi_{c1}K_S^0$	$+0.640\pm 0.117\pm 0.040$	$-0.017 \pm 0.083^{+0.046}_{-0.026}$
$J/\psi K_L^0$	$+0.642\pm 0.047\pm 0.021$	$+0.019 \pm 0.026^{+0.017}_{-0.041}$
All modes	$+0.667\pm 0.023\pm 0.012$	$+0.006 \pm 0.016 \pm 0.012$

Systematic Uncertainties

TABLE III. Systematic errors in S_f and A_f in each f_{CP} mode and for the sum of all modes.

		J .	<i>J J J L J</i>			
		$J/\psi K_S^0$	$\psi(2S)K_S^0$	$\chi_{c1}K_S^0$	$J/\psi K_L^0$	All
Vertexing	${\cal S}_f$	±0.008	±0.031	±0.025	±0.011	± 0.007
	$\dot{\mathcal{A}}_{f}$	± 0.022	± 0.026	± 0.021	± 0.015	± 0.007
Δt resolution	${\cal S}_{f}^{'}$	± 0.007	± 0.007	± 0.005	± 0.007	± 0.007
	$\dot{\mathcal{A}}_{f}$	± 0.004	± 0.003	± 0.004	± 0.003	± 0.001
Tag-side interference	${\cal S}_{f}^{'}$	± 0.002	± 0.002	± 0.002	± 0.001	± 0.001
	$\dot{\mathcal{A}}_{f}$	+0.038 -0.000	+0.038 -0.000	+0.038 -0.000	+0.000 -0.037	± 0.008
Flavor tagging	${\cal S}_{f}^{'}$	± 0.003	± 0.003	± 0.004	± 0.003	± 0.004
	$\dot{\mathcal{A}}_{f}$	± 0.003	± 0.003	± 0.003	± 0.003	± 0.003
Possible fit bias	${\cal S}_{f}^{'}$	± 0.004	± 0.004	± 0.004	± 0.004	± 0.004
	$\dot{\mathcal{A}}_{f}$	± 0.005	± 0.005	± 0.005	± 0.005	± 0.005
Signal fraction	${\cal S}_{f}^{"}$	± 0.004	± 0.016	< 0.001	± 0.016	± 0.004
	$\mathring{\mathcal{A}}_{f}$	± 0.002	± 0.006	< 0.001	± 0.006	± 0.002
Background Δt PDFs	${\mathcal S}_f$	< 0.001	± 0.002	± 0.030	± 0.002	± 0.001
	$\mathring{\mathcal{A}}_{f}$	< 0.001	< 0.001	± 0.014	< 0.001	< 0.001
Physics parameters	${\mathcal S}_f$	± 0.001	± 0.001	± 0.001	± 0.001	± 0.001
	$\mathring{\mathcal{A}}_{f}$	< 0.001	< 0.001	± 0.001	< 0.001	< 0.001
Total	\mathcal{S}_{f}^{+}	± 0.013	± 0.036	± 0.040	± 0.021	± 0.012
	$\check{\mathcal{A}_f}$	$+0.045 \\ -0.023$	$+0.047 \\ -0.027$	$+0.046 \\ -0.026$	$+0.017 \\ -0.041$	± 0.012

Belle Sin2 β at the Y(5S) [PRL 108 171801 (2012)] 10 – (a) $B^0-\pi^+$ comb. • Belle has measured sin2 β at the Y(5S) ⁸ $B^0 \rightarrow J/\psi K^0s$ Events / 8 MeV/c² using the technique of "B- π " tagging Y(5S) to $\bar{B}^{(*)0}B^{(*)+}\pi^-$ Tag with the charge of the π 5.2 5.3 5.4 5.1 M_{miss} [GeV/c²] 10 (b) $B^0-\pi^-$ comb. $^{8}FB^{0}\rightarrow J/\psi K^{0}s$ Fully reconstructed to Events / 8 MeV/c² Not reconstructed CP eigenstate **Time Integrated!** $A_{BB\pi} \equiv \frac{N_{BB\pi^-} - N_{BB\pi^+}}{N_{BB\pi^-} + N_{BB\pi^+}} = \frac{Sx + A}{1 + x^2}, \quad \begin{array}{c} \text{Could be used} \\ \text{for, e.g., } B^0 \rightarrow \pi^0 \pi^0 \end{array}$ 5.3 5.2 5.4 at Super B factory M_{miss} [GeV/c²] where $N_{BB\pi^+}$ and $N_{BB\pi^-}$ are the observed number of 1.5 $B^{(*)0}B^{(*)-}\pi^+$ and $\bar{B}^{(*)0}B^{(*)+}\pi^-$ events in which the neutral 1 B decays to a CP eigenstate, respectively, and S and A are 0.5 the mixing-induced and direct CP-violating parameters, 0 A -0.5 $x = (m_H - m_L)/\Gamma, \quad \pm \Gamma = (\Gamma_H + \Gamma_L)/2,$ $\sin 2\phi_1 = 0.57 \pm 0.58(\text{stat}) \pm 0.06(\text{syst}).$ $y = (\Gamma_L - \Gamma_H)/2\Gamma$ assuming $y = 0 \Rightarrow \sin 2\phi_1 = -\eta_{CP} \left(\frac{1+x^2}{x}\right) A_{BB\pi}$. -1.5 -1 -0.5 0.5

FPCP 2013 - Buzios, Brasil

$BaBar \ B^0 \longrightarrow K_s K_s K_s K_s$ TD analysis - Backgrounds and Yields

TABLE VI: Summary of *B*-background modes included in the fit model of the time-dependent analysis. The expected number of events takes into account the branching fractions (\mathcal{B}) and efficiencies. In case there is no measurement, the branching fraction of an isospin-related channel is used. All the fixed yields are varied by $\pm 100\%$ for systematic uncertainties.

Submode	Background mode	Varied	$\mathcal{B} [imes 10^{-6}]$	Number of events
$B^0 \rightarrow 3K^0_S(\pi^+\pi^-)$	$K^0_S K^0_S K^0_L$	no	2.4	0.71
	$K^{0}_{S}K^{0}_{S}K^{*0}$	no	27.5	9.55
	$K^{\overline{0}}_S K^{\overline{0}}_S K^+$	no	11.5	4.27
	$B^0 \to \{\text{neutral generic decays}\}$	yes	not applicable	21.7
	$B^+ \to \{\text{charged generic decays}\}$	yes	not applicable	15.5
$B^0 \to 2K^0_S(\pi^+\pi^-)K^0_S(\pi^0\pi^0)$	$K^0_S K^0_S K^0_L$	no	2.4	0.67
	$K^{0}_{S}K^{0}_{S}K^{*0}$	no	27.5	5.3
	$K^0_S K^0_L K^{st 0}$	no	27.5	0.3
	$K^0_S K^0_S K^+$	no	11.5	2.9
	$K^{0}_{S}K^{0}_{S}K^{*+}$	no	27.5	7.2
	$B^0 \to \{\text{neutral generic decays}\}$	yes	not applicable	73.6
	$B^+ \to \{\text{charged generic decays}\}$	yes	not applicable	73.8

Species	$3K^0_S(\pi^+\pi^-)$	$2K_S^0(\pi^+\pi^-)K_S^0(\pi^0\pi^0)$
Signal	$201 {}^{+16}_{-15}$	62^{+13}_{-12}
$\operatorname{Continuum}$	$3086{}^{+56}_{-54}$	7086^{+85}_{-83}
B^+B^- bkg	-54^{+29}_{-24}	45^{+34}_{-30}
$B^0\overline{B}{}^0$ bkg	9^{+31}_{-30}	4^{+38}_{-29}

Eli Ben-Haim

CKM Workshop, September 29th 2012

BaBar $B^0 \rightarrow K_s K_s K_s$

TD analysis: systematic uncertainties

Source	\mathcal{S}	\mathcal{C}
MC _{stat}	0.002	0.001
$B_{ m reco}$	0.004	0.003
B-bkg	0.032	0.012
MC-Data: Δt	0.045	0.027
MC-Data: Discr. Vars	0.021	0.004
Fit Bias	0.022	0.018
Vetoes	0.006	0.004
Misc	0.004	0.015
Sum	0.064	0.038

BaBar $B^0 \rightarrow K_s K_s K_s$

 $B^0 \rightarrow K_S K_S K_S$

Results of the amplitude analysis

$f_0(980)K_S^0$	Fit Fraction (FF)	$0.44^{+0.20}_{-0.19}$
	Significance $[\sigma]$	3.0
$f_0(1710)K_S^0$	\mathbf{FF}	$0.07^{+0.07}_{-0.03}$
	Significance $[\sigma]$	3.3
$f_2(2010)K_S^0$	\mathbf{FF}	$0.09^{+0.03}_{-0.03}$
	Significance $[\sigma]$	3.3
NR	\mathbf{FF}	$2.16^{+0.36}_{-0.37}$
	Significance $[\sigma]$	8.0
$\chi_{c0} K_S^0$	\mathbf{FF}	$0.07^{+0.04}_{-0.02}$
	Significance $[\sigma]$	3.9
	Total FF	$2.84_{-0.66}^{+0.71}$

5 (+inclusive) Branching fractions (B)

Mode	$\mathcal{B} [\times 10^{-6}]$	PDG:
Inclusive $B^0 \to K^0_S K^0_S K^0_S$	$6.19 \pm 0.48 \pm 0.15 \pm 0.12$	$6.2 \pm \frac{1.2}{1.2}$
$f_0(980)K_S^0, f_0(980) \to K_S^0K_S^0$	$2.7{}^{+1.3}_{-1.2}\pm 0.4\pm 1.2$	
$f_0(1710)K_S^0, f_0(1710) \to K_S^0 K_S^0$	$0.50 {}^{+0.46}_{-0.24} \pm 0.04 \pm 0.10$	
$f_2(2010)K_S^0, f_2(2010) \to K_S^0 K_S^0$	$0.54^{+0.21}_{-0.20}\pm0.03\pm0.52$	
NR, $K_S^0 K_S^0 K_S^0$	$13.3^{+2.2}_{-2.3} \pm 0.6 \pm 2.1$	
$\chi_{c0}K^0_S, \ \chi_{c0} \to K^0_S K^0_S$	$0.46^{+0.25}_{-0.17} \pm 0.02 \pm 0.21$	

Consistent with other measurements

Eli Ben-Haim

CKM Workshop, September 29th 2012

BaBar $B^0 \rightarrow K^+K^-K_s$

Main sources of backgrounds and yields

TABLE IV. Summary of the $B\bar{B}$ backgrounds in $B^0 \rightarrow K^+ K^- K_S^0$. The "Expected yields" columns give the expected number of events for $471 \times 10^6 B\bar{B}$ pairs, based on MC simulation. The "Fitted yields" columns give the fitted number of events from the best solution of the fit on the data (see Sec. VII C).

Class	Decay	Expecte	d yields	Fitted	yields
		$K^0_S \rightarrow \pi^+ \pi^-$	$K_S^0 \to \pi^0 \pi^0$	$K_S^0 \rightarrow \pi^+ \pi^-$	$K_S^0 \to \pi^0 \pi^0$
1	$B^0 \rightarrow D^- K^+ (D^- \rightarrow K^- K_S^0)$	42 ± 13	4 ± 1	36 ± 7	3.6 ± 0.6
2	$B^0 \rightarrow D_s^- K^+ (D_s^- \rightarrow K^- K_s^{\tilde{0}})$	33 ± 6	3 ± 1	11 ± 4	1.1 ± 0.4
3	$B^0 \rightarrow \bar{D}^0 K^0_S (\bar{D}^0 \rightarrow K^+ \bar{K})$	10 ± 1	1.0 ± 0.1	16 ± 5	1.9 ± 0.5
4	$B^0 \to J/\psi K_S^{\tilde{0}}(J/\psi \to K^+K^-)$	10 ± 1	1.0 ± 0.1	4 ± 4	0.5 ± 0.4
5	$B^+B^-/B^0\bar{B}^0$ remaining	141 ± 7	123 ± 6	29 ± 28	48 ± 18

BaBar B⁰ \rightarrow K+K-K_s

Main sources of systematic uncertainties

TABLE XVII. Summary of systematic uncertainties for $B^0 \rightarrow K^+ K^- K_S^0$ parameters. Errors on angles, A_{CP} 's, and branching fractions are given in degrees, percent, and units of 10^{-6} , respectively.

Parameter	Line shape	Fixed PDF params	Other	Add resonances	Fit bias	Total
$\beta_{\rm eff}(\phi(1020))$	2	1	0	2	0	2
$\boldsymbol{\beta}_{\mathrm{eff}}(f_0(980))$	1	1	0	4	0	4
$\beta_{\rm eff}$ (other)	0.7	0.4	0.2	0.8	0.4	1.2
$A_{CP}(\phi(1020))$	2	2	2	2	3	5
$A_{CP}(f_0(980))$	6	3	2	5	2	9
A_{CP} (other)	1	1	1	2	1	3
$\mathcal{B}(\boldsymbol{\phi}(1020))$	0.13	0.05	0.08	0.05	0.03	0.18
$\mathcal{B}(f_0(980))$	1.3	0.3	0.1	2.0	0.1	2.4
$\mathcal{B}(f_0(1500))$	0.04	0.02	0.02	0.10	0.03	0.12
$\mathcal{B}(f_2'(1525))$	0.02	0.01	0.00	0.15	0.02	0.16
$\mathcal{B}(f_0(1710))$	0.3	0.1	0.1	0.4	0.1	0.5
$\mathcal{B}(\chi_{c0})$	0.02	0.02	0.02	0.01	0.04	0.06
\mathcal{B} (NR(total))	2	1	1	8	1	9
\mathcal{B} (NR (S wave))	2	1	1	8	1	8
\mathcal{B} (NR (<i>P</i> wave))	0.1	0.2	0.1	0.3	0.1	0.4
${\mathcal B}$ (total)	0.0	0.4	0.7	0.0	0.1	0.8
\mathcal{B} (charmless)	0.1	0.4	0.6	0.0	0.2	0.8
tional resonances: We test for the $f_0(1370)$, $a_0^0(1450)$, $f_2(1270)$, $f_2(2010)$, $and f_2(2300)$ in each mode. We also test for the $\phi(1680)$ in $B^+ \to K^+ K^- K^+$ and $B^0 \to K^+ K^- K_S^0$, and the $a_0^{\pm}(980)$ and $a_0^{\pm}(1450)$ in $B^+ \to K_S^0 K_S^0 K^+$ and $B^0 \to K^+ K^- K_S^0$.			270), $f_2(2010)$, the $\phi(1680)$ in d the $a_0^{\pm}(980)$ $^0 \rightarrow K^+ K^- K_S^0$.			

BaBar $B^0 \rightarrow K^+K^-K_s$

Determining the signal model

- Prior to fitting CPV parameters, the nominal DP models are established
 - \rightarrow CPV parameters set to the SM ones
 - \rightarrow Legendre polynomial moments vs invariant masses, used to compare data and fit

$$\langle P_{\ell}(\cos\theta_3)\rangle \equiv \int_{-1}^{1} d\Gamma P_{\ell}(\cos\theta_3) d\cos\theta_3$$

- $\mathbf{K}^+\mathbf{K}^-\mathbf{K}^+$: $\phi(1020)$, $f_0(980)$, $f_0(1500)$, $f_2'(1525)$, $f_0(1710)$, χ_{c0} , poly. NR
- $K_{S}K_{S}K^{+}$:, $f_{0}(980)$, $f_{0}(1500)$, $f_{2}'(1525)$, $f_{0}(1710)$, χ_{c0} , poly. NR

 $B^0 \rightarrow K^+ K^- K_S$

In the 3 modes: no need for the $f_X(1500)$ good description with $f_0(1500)$, $f_2'(1525)$, $f_0(1710)$)

R. de Sangro (LNF-INFN)

BaBar B[±] \rightarrow K⁺K⁻K[±] and K_SK_SK[±]

Other $B \rightarrow 3K$ modes

 $N_{sig} = 5269 \pm 84$ (Purity = 43%) $A_{CP}(\text{inclusive}) = (-1.7^{+1.9}_{-1.4} \pm 1.4)\%$ $A_{CP}(\phi K) = (12.8 \pm 4.4 \pm 1.3)\%$ BF = $(33.4 \pm 0.5 \pm 0.9) \times 10^{-6} [\chi_{c0} \text{K excluded}]$ (**2.8** σ from 0, SM: ~ 0 - 4.7%) Beneke, Neubert, Nucl.Phys B675,333 (QCDF) ; Li, Mishima, PRD 74, 094020 (pQCD) -800 Data 700 Signal 'sPlot" in the Events/(0.0005 GeV/c²) 120 B Background Events / (0.0025 GeV/c²) 600 Continuum 100 ---- B 500 80 400 60 300 40 200 20

0 5.28 5.285 5.29 5.27 5.275 1.02 1.03 0.99 1.01 $m_{K^+K^-,low}$ (GeV/c²) m_{FS} (GeV/c²) $N_{sig} = 632 \pm 28$ (Purity = 20%) **K**SKSK $A_{CP} = (4 \pm 5 \pm 2)\%$ BF = $(10.1\pm0.5\pm0.3)\times10^{-6}$ [χ_{c0} K excluded]

Eli Ben-Haim

100

CKM Workshop, September 29th 2012

-X-X-X

May 19-24, 2013

1.04

1.05

1.06

[LHCb-CONF-2012-018]

LHCb $B^{\pm} \rightarrow K^{+}K^{-}K^{\pm}$

R. de Sangro (LNF-INFN)

FIG. 1. $M_{\rm bc}$ and ΔE distributions (data points with error bars) and fit projections (solid lines) for (a)–(b) $B^0 \rightarrow D^+D^-$ and (c)– (d) $B^0 \rightarrow D^{*\pm}D^{\mp}$ decays. The dotted (dashed) lines represent projections of signal (background) fit components. A $|\Delta E| <$ 30 MeV ($M_{\rm bc} > 5.27 \text{ GeV}/c^2$) requirement is applied in plotting the $M_{\rm bc}(\Delta E)$ distributions.

D*D

$$\begin{aligned} \mathcal{A}_{D^*D} &= +0.06 \pm 0.05 \pm 0.02, \\ \mathcal{S}_{D^*D} &= -0.78 \pm 0.15 \pm 0.05, \\ \mathcal{C}_{D^*D} &= -0.01 \pm 0.11 \pm 0.04, \end{aligned} \qquad \begin{aligned} \mathcal{S}_{D^+D^-} &= -1.06^{+0.21}_{-0.14} \pm 0.08, \\ \mathcal{C}_{D^+D^-} &= -0.43 \pm 0.16 \pm 0.05, \\ \mathcal{L}_{D^*D} &= -0.13 \pm 0.15 \pm 0.04, \end{aligned} \qquad \\ \Delta \mathcal{L}_{D^*D} &= -0.13 \pm 0.15 \pm 0.04, \end{aligned}$$

Belle B⁰ \rightarrow D(*)+D-

FIG. 2 (color online). Top: Δt distributions (data points with error bars) of (a) $B^0 \rightarrow D^+D^-$ and (b) $B^0 \rightarrow D^{*+}D^- + B^0 \rightarrow D^{*-}D^+$ candidates associated with high quality flavor tags (r > 0.5). The lines show projections of the sum of signal and background components in the fit. The signal purity for r > 0.5 is 69% (66%) for $B^0 \rightarrow D^+D^-(B^0 \rightarrow D^{*\pm}D^{\mp})$. Bottom: The *CP* asymmetry obtained from the above distributions and projections.

D⁺D⁻

/ Intituto Nazionale di Franza Nucleare

Belle B⁰ \rightarrow D(*)+D-

on BR's

S TABLE I. Summary of systematic uncertainties of the $B^0 \rightarrow D^+D^-$ and $B^0 \rightarrow D^{*\pm}D^{\mp}$ branching fractions (in %).

Systematic uncertainties

Source	D^+D^-	$D^{*\pm}D^{\mp}$
Track reconstruction efficiency	2.0	4.1
K_S^0 reconstruction efficiency	0.7	0.7
$\pi^{\tilde{0}}$ reconstruction efficiency	-	1.6
K/π selection efficiency	5.5	5.3
Event reconstruction efficiency	1.0	0.1
Continuum suppression	4.1	-
Fit models	1.1	0.6
D branching fractions	4.3	3.9
Number of $B\overline{B}$ events	1.4	1.4
Total	8.6	8.1

on CP asymmetries

TABLE II. Summary of systematic uncertainties in the time-dependent *CP* asymmetry parameters for $B^0 \rightarrow D^+D^-$ and $B^0 \rightarrow D^{*\pm}D^{\mp}$ decays (in units of 10^{-2}).

Source	$\mathcal{S}_{D^+D^-}$	$\mathcal{C}_{D^+D^-}$	\mathcal{A}_{D^*D}	\mathcal{S}_{D^*D}	\mathcal{C}_{D^*D}	$\Delta \mathcal{S}_{D^*D}$	$\Delta \mathcal{C}_{D^*D}$
Vertex reconstruction	3.6	2.2	1.3	2.5	2.3	2.4	2.3
Δt resolution function	6.5	2.4	0.4	3.5	1.1	1.9	0.6
Background Δt PDFs	2.7	0.5	0.2	0.7	0.2	0.5	0.1
Signal purity	1.2	1.8	0.2	0.9	0.4	0.3	0.2
Physics parameters	0.7	0.4	< 0.1	0.2	0.1	0.2	< 0.1
Flavor tagging	0.7	0.6	< 0.1	0.4	0.3	0.3	0.2
Possible fit bias	0.8	0.2	0.6	0.8	1.1	0.8	0.5
Peaking background	0.3	0.9	0.4	1.3	0.5	0.8	0.7
Tag-side interference	1.4	3.2	0.2	1.1	3.1	0.9	0.6
Total	8.2	5.1	1.6	4.9	4.3	3.5	2.6

N FN Inthe Restored

Belle $B^0 \rightarrow D^{*+}D^{*-}$

Systematic uncertainties

IABLE III. Systematic errors of S, A,	R_0 , and R_{\perp} .

	S	A	R_0	R_{\perp}
Fit model	±0.002	< 0.001	±0.010	± 0.003
Physics parameters	± 0.004	± 0.001	± 0.001	< 0.001
Flavor tagging	± 0.003	± 0.002	< 0.001	< 0.001
Tag side interference	± 0.007	± 0.032	± 0.002	± 0.001
Δt signal resolution	± 0.021	± 0.006	± 0.001	± 0.001
Reconstruction efficiencies	< 0.001	< 0.001	± 0.002	± 0.001
Vertexing	± 0.017	± 0.021	± 0.004	± 0.004
Total	± 0.029	± 0.038	± 0.011	± 0.006

 Tag-side interference: interference between Cabibbo-favoured b→cūd and doubly-Cabibbo suppressed b→cūd decays of the tag B

O. Long, M. Baak, R. N. Cahn, and D. Kirkby, Phys. Rev. D 68, 034010 (2003).

BaBar $B^0 \rightarrow D^{*+}D^{*-}$ Partial Reconstruction

Evaluation of Systematic Errors B⁰->D*+D*-

	kaon tags		lepton tags	
Systematic source	C	S	C	S
Kinematic fit parameters	0.013	0.034	0.023	0.057
Continuum Δt fit parameters	0.002	0.001	_	_
Signal s_w	0.0002	0.0007	_	_
$B\overline{B}$ Combinatoric s_w	0.017	0.0007	0.001	0.005
Signal tagging dilution: tag side (w)	0.012	0.045	0.002	0.002
Mistag difference (Δw)	0.007	0.0004	0.007	0.0009
Signal tagging dilution: CP side (α_{D^0})	0.006	0.017	0.002	0.002
Peaking background	0.0002	0.0003	0.0002	0.00004
Fit bias (MC statistics)	0.011	0.018	0.012	0.019
Tag interference from DCSD	0.030	0.002	_	_
B^0 lifetime variation	0.0002	0.002	0.0003	0.004
Δm_d variation	0.0003	0.001	0.0004	0.002
SVT misalignment	0.003	0.007	0.002	0.004
Boost uncertainty	0.002	0.006	0.005	0.007
Total	0.042	0.062	0.028	0.061

= top contributions

Analysis Method **PDF**

Probability Density Functions B⁰→D*+D*-

Overall PDF for the on-Peak sample is the sum of three components

$$\begin{split} P_{\rm on} &= f_{B\overline{B}} \begin{bmatrix} {\rm signal} & {\rm B\overline{B}\ combinatoric} \\ [f_{\rm sig}P_{\rm sig} + (1-f_{\rm sig})P_{\rm comb}] + (1-f_{B\overline{B}})P_{q\overline{q}} & P_{\rm off} = P_{q\overline{q}} \\ \\ {\rm B\overline{B}} & {\rm continuum} \end{split}$$

Each component is the product of a kinematical and a Δt part

$$P_{i}(m_{\text{rec}}, F, \Delta t, \sigma_{\Delta t}, S_{\text{tag}}) = \underbrace{\mathcal{M}_{i}(m_{\text{rec}}) \mathcal{F}_{i}(F) T_{i}'(\Delta t, \sigma_{\Delta t}, S_{\text{tag}})}_{\text{"KIN"}} \underbrace{\mathcal{M}_{i}(\Delta t, \sigma_{\Delta t}, S_{\text{tag}})}_{\text{"KIN"}} = \underbrace{\int d\Delta t_{\text{true}} T_{i}(\Delta t_{\text{true}}, S_{\text{tag}}) \mathcal{R}_{i}(\Delta t - \Delta t_{\text{true}}, \sigma_{\Delta t})}_{T_{\text{sig}}} = \frac{1}{4\tau_{b}} e^{-|\Delta t_{\text{true}}|/\tau_{b}} \cdot \left\{ (1 - S_{\text{tag}} \Delta \omega(1 - \alpha)) + S_{\text{tag}}(1 - 2\omega) (1 - \alpha) \right\} \cdot \left[C \cos(\Delta m_{d} \Delta t_{\text{true}}) + S \sin(\Delta m_{d} \Delta t_{\text{true}}) \right] \right\}$$

$$S = -\frac{2\Im m(\lambda)}{1 + |\lambda|^{2}} \quad C = \frac{1 - |\lambda|^{2}}{1 + |\lambda|^{2}} \quad \lambda = \frac{q}{p} \frac{\overline{A}}{A}$$

Analysis Variables $B^0 \rightarrow D^{*+}D^{*-}$ MC distributions

- Recoil mass, m_{rec}
 - Signal peaks at D⁰ mass
 - Backgrounds from BB combinatorial and continuum qq doesn't
 - Separate PDFs for different sample components: Signal, BB combinatorial, qq continuum
 - Require $m_{rec} \ge 1.835 \text{ GeV/c}^2$
- Fisher Discriminant based on event shape variables
 - Help discriminate between spherical BB and jet-like continuum qq events
 - No cut: PDF used in fit
 - Separate PDFs for BB and continuum
- Time difference Δt
 - Separate PDFs for all sample components
- Tagging based on single track (K or Lepton)
 - Additional dilution in partial reconstruction analysis due to tagging tracks from missing D⁰
 - (1- α), where α is the fraction of tags from the unreconstructed D⁰

$$\Delta t = \Delta z / \gamma eta c$$

 $\Delta z = z_{
m rec} - z_{
m tag}$

Event Selection B⁰ → D*+D*-

4.7 Event Selection Summary

This is a summary of cuts used in our selection of events.

• Cuts in $\Upsilon(4S)$ center-of-mass on D^* and soft pion momentum, and missing D^0 mass::

1.3 GeV/
$$c \le p_{D^*}^* \le 2.1 \,\text{GeV}/c$$

 $p_{\pi}^* \le 0.6 \,\text{GeV}/c$

• Continuum rejection cut:

$$R_2 \le 0.3$$

• "Quality" cuts on reconstructed D^* (see Sec. 4.3):

$$P_{D^*}^{vrt} \text{ and } P_{D^0}^{vrt} > 10^{-2}$$

Dch yes : $|Q_{D^*} - Q_{PDG}| = |M_{D^*} - M_{D^0} - M_{\pi} - 6 \text{ MeV}/c^2| \le 1 \text{ MeV}/c^2$
Dch no : $|Q_{D^*} - Q_{PDG}| = |M_{D^*} - M_{D^0} - M_{\pi} - 6 \text{ MeV}/c^2| \le 1.5 \text{ MeV}/c^2$
 $|M_{D^0} - M_{PDG}| \le [1. - 1.5] \cdot \sigma_i \text{ MeV}/c^2$

- "PID" and flight-length cuts on Kaons in D^0 mesons (see Sec. 4.3)
- Slow pion dE/dx cuts:

$$p_{\pi_s} \le 0.150 \,\text{GeV}/c^2 : \quad dE/dx \; (MeV/cm) \ge \left(\frac{0.25}{(p_{\pi_s} - 0.030)} + 1.0\right);$$
$$0.150 \,\text{GeV}/c^2 < p_{\pi_s} \le 0.500 \,\text{GeV}/c^2 : \quad dE/dx \; (MeV/cm) \; \le \left(\frac{1.75}{(p_{\pi_s})} + 2.0\right);$$

• Missed D^0 cuts:

 $\left|\cos(\theta_{BD^*})\right| \le 1$

Tagging B⁰→D*+D*-

- Mis-tag due to unreconstructed D⁰ tracks
 - This introduces an additional dilution D=(1- α), where α is the fraction of tags coming from the missing D⁰
 - This fraction can be obtained from data with some input from signal MC
 - Can be reduced with a cut on the cosine of the opening angle between the tagging track and the missing D⁰ direction θ_{tag}

Figure 2.1: Signal Monte Carlo distributions of $\cos(\vartheta_{\text{tag}})$ for tracks from the missed D^0 (black) and from the other B^0 (red); lepton tags on the left, kaon tags on the right.

"Tension" <~3 σ between the SM fit sin2 β prediction and the measured value

Paramotor	UTfit				CKMfitter			
1 arameter	prediction	measurement	pull	pr	rediction	measurement	pull	
α (°)	87.5 ± 3.8	91.4 ± 6.1	$+0.5\sigma$	9	$95.9^{+2.2}_{-5.6}$	$88.7^{+2.2}_{-5.0}$	-1.0σ	
$\sin 2\beta$	0.809 ± 0.046	0.667 ± 0.024	-2.7σ	0.8	$820^{+0.024}_{-0.028}$	0.679 ± 0.020	-2.6σ	
$\gamma(\circ)$	67.8 ± 3.2	75.5 ± 10.5	$+0.7\sigma$	6	$07.2^{+4.4}_{-4.6}$	66^{+12}_{-12}	-0.1σ	
$V_{ub} (10^{-3})$	3.62 ± 0.14	3.82 ± 0.56	$+0.3\sigma$	3	$.55^{+0.15}_{-0.14}$	$3.92 \pm 0.09 \pm 0.45$	0.0σ	
$V_{cb} (10^{-3})$	42.26 ± 0.89	41 ± 1	-0.9σ	4	$1.3^{+0.28}_{-0.11}$	$40.89 \pm 0.38 \pm 0.59$	0.0σ	
$\varepsilon_k (10^{-3})$	1.96 ± 0.20	2.229 ± 0.010	$+1.3\sigma$	2	$.02^{+0.53}_{-0.52}$	2.229 ± 0.010	0.0σ	
$\Delta m_s (\mathrm{ps}^{-1})$	18.0 ± 1.3	17.69 ± 0.08	-0.2σ	1	$7.0^{+2.1}_{-1.5}$	17.731 ± 0.045	0.0σ	
$\mathcal{B}(B \to \tau \nu) (10^{-4})$	0.821 ± 0.0077	1.67 ± 0.34	$+2.5\sigma$	0.7	$733^{+0.121}_{-0.073}$	1.68 ± 0.31	$+2.8\sigma$	
$\beta_s \text{ rad } (*)$	0.01876 ± 0.0008			0.018	$822 \substack{+0.00082 \\ -0.00080}$			
$\mathcal{B}(B^0_s \to \mu\mu) (10^{-9}) (*)$	3.47 ± 0.27			3	$.64^{+0.21}_{-0.32}$			

