FPCP2013: Theory Summary

Yuval Grossman

Cornell

Y. Grossman

Theory Summary

A plot

Y. Grossman

Theory Summary

Summary

The SM works

Y. Grossman

Theory Summary

Summary

The SM works too good

Y. Grossman

Theory Summary

Status of the SM

Y. Grossman

Theory Summary

Recent triumphs and issues

- Triumphs
 - CPV in $B_s \to K\pi$
 - CPV in charm
 - Λ_b lifetime
- Unsolved issues
 - CPV in $B \to K\pi$
 - $B \to D^{(*)} \tau \nu$
 - CPV in $\tau \to K_S \pi \nu$
 - Semileptonic CP asymmetry
 - Top FB asymmetry

●
$$g-2$$

Beyond the SM

Y. Grossman

Theory Summary

Why do we think there is NP?

Two types of reasons: data and beauty

- Data
 - Dark matter
 - Baryogenesis
 - Inflation, dark energy
 - Neutrino masses (?)
- Beauty
 - Cosmological constant
 - Hierarchy problem
 - Flavor hierarchy problem
 - The strong CP problem
 - All the hints for a GUT

History of physics

Both types of problems led to new discoveries

- Data
 - Black body radiation
 - Constant of speed of light
 - Discovery of the top
- Beauty
 - The periodic table was a hint
 - Charm was predicted based on beauty
 - **_** ...
- At times things are mixed: Relativity was discovered based on beauty and it helped to solve data problems

Y. Grossman

How to look for NP?

- There are two ways to find NP
 - Find new states (direct)
 - Find virtual effects of new states (virtual)
- Direct give more information, but limited in reach
- Virtual give more reach, but may not be unique
 - **• EWP**: 10⁴ **GeV**
 - Flavor: 10⁸ GeV
 - Neutrinos: 10^{15} GeV
 - Proton decay: 10^{16} GeV
 - CPT and Lorentz violation $> M_{Pl}$

Y. Grossman

Why flavor

Y. Grossman

Theory Summary

Why flavor?

Flavor is interesting

- Fermion masses are (mainly) small and hierarchical
- FCNCs are very small
- The charged current is universal
- Quark mixing angles are small and hierarchical
- The patterns of leptons and quark flavors are different

Flavor seems to have a lot to tell us

Y. Grossman

Theory Summary

The new physics flavor problem

The SM flavor puzzle: why the masses and mixing angles exhibit hierarchy. This is not what we refer to here

The SM flavor structure is special

- Universality of the charged current interaction
- FCNCs are highly suppressed

Any NP model must reproduce these successful SM features

Y. Grossman

Theory Summary

The new physics flavor scale

 \checkmark K, D and B physics:

$$\frac{s\overline{d}s\overline{d}}{\Lambda^2} \quad \Rightarrow \quad \Lambda \gtrsim 10^5 \text{ TeV}$$

Charged leptons:

$$\frac{\mu \overline{e} f \overline{f}}{\Lambda^2} \quad \Rightarrow \quad \Lambda \gtrsim 10^3 \text{ TeV}$$

- There is no exact symmetry that can forbid such operators
- All other bounds on NP, like proton decay, maybe due to exact symmetry

Y. Grossman

Theory Summary

Flavor and the hierarchy problem

There is tension:

- The hierarchy problem $\Rightarrow \Lambda \sim 1 \text{ TeV}$
- Flavor bounds $\Rightarrow \Lambda > 10^5 \text{ TeV}$

This tension is the NP flavor problem

Any TeV scale NP has to deal with the flavor bounds $\downarrow \downarrow$ Such NP cannot have a generic flavor structure

Y. Grossman

Theory Summary

Where is the tail?

Y. Grossman

Theory Summary

Where is the tail (again)?

- Weak decay
- Atomic parity violation
- Cross section in $e^+e^- \rightarrow \mu^+\mu^-$ at low energy

Y. Grossman

I feel that the "tail problem" is the most severe one in HEP

Theory Summary

The hierarchy problem

Y. Grossman

Theory Summary

Closer look at the "beauty" problems

- Cosmological constant
- Hierarchy problem
- Flavor hierarchy problem
- The strong CP problem
- All hints for GUT
- Q: Which one of these problems is more "pressing"?

Most common answer: the CC, because it involves a 10^{120} fine tuning and we have no theoretical idea

Y. Grossman

Theory Summary

OJ Simpson and the hierarchy problem

Y. Grossman

Theory Summary

What are the "promising" problems

- Problems are hints for something deeper
- All these hints give the same "probability" to find NP

 $1 - P \approx 1$

- The hierarchy problem is different as the scale associated with it is the weak scale
- GUTs have a scale, but it cannot be probed directly
- The flavor problem does not have a scale

Bottom line: We think there is physics beyond the SM, but we do not (yet) know what it is

Y. Grossman

Theory Summary

Why flavor (take 2)

Y. Grossman

Theory Summary

Why flavor (take 2)

Our best way to get a deeper understanding of Nature

Y. Grossman

Theory Summary

Thank you!

Y. Grossman

Theory Summary