
Measurement of γ using
B → Kππ and B → KKK̄ decays

David London
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The standard way to obtain clean information about CKM phases is
through the measurement of indirect CPV in B/B̄ → f . Conventional
wisdom: one cannot obtain such clean information from 3-body
decays.

Two reasons: (i) f must be a CP eigenstate, but 3-body final states
are, in general, not CP eigenstates. E.g., KSπ+π−: the value of its CP
depends on whether the relative π+π− angular momentum is even
(CP +) or odd (CP −).

(ii) Can only get clean weak-phase information from indirect CP
asymmetries if decay is dominated by amplitudes with a single weak
phase. But 3-body decays generally receive significant contributions
from amplitudes with different weak phases. Even if final-state CP
could be fixed, need a way of dealing with this “pollution.”

Recently it was shown that all of these difficulties can be overcome.
M. Imbeault, N. Rey-Le Lorier, D. L., Phys. Rev. D 84, 034040 (2011), 034041 (2011);

N. Rey-Le Lorier, D. L., Phys. Rev. D 85, 016010 (2012).
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Fundamental idea: it is common to combine observables from different
2-body B decays in order to extract weak-phase information. E.g.,
B → ππ (α), B → DK (γ), B → πK (the B → πK puzzle).

In 3-body B decays, the idea is the same, except that the analysis
applies to each point in the Dalitz plot. (That is, the analysis is
momentum dependent.)

Disadvantage: analysis is more complicated. Big advantage: since it
holds at each point in the Dalitz plot, analysis really represents many
independent determinations of the weak-phase information. These can
be combined, considerably reducing the error.

∃ 3 ingredients in the analysis.
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Dalitz Plots
In the decay B → P1P2P3, one defines the three Mandelstam variables
sij ≡ (pi + pj)

2, where pi is the momentum of Pi. (The three sij are
not independent, but obey s12 + s13 + s23 = m2

B + m2
1 + m2

2 + m2
3.) The

Dalitz plot is given in terms of two Mandelstam variables, say s12 and
s13. Key point: can reconstruct the full decay amplitude
M(B → P1P2P3)(s12, s13).

The amplitude for a state with a given symmetry is then found by
applying this symmetry to M(s12, s13). E.g., the amplitude for the final
state KSπ+π− with CP + is symmetric in 2 ↔ 3. This is given by
[M(s12, s13) + M(s13, s12)]/

√
2.

This amplitude is then used to compute all the observables for the
decay. Note: all observables are momentum dependent – they take
different values at each point in the Dalitz plot.
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Diagrams
In order to remove the pollution due to additional decay amplitudes,
one first expresses the full amplitude in terms of diagrams. These are
similar to those of two-body B decays (T , C, etc.), but here one has to
“pop” a quark pair from the vacuum. We add the subscript “1” (“2”) if
the popped quark pair is between two non-spectator final-state quarks
(two final-state quarks including the spectator).

The above figure shows the T ′
1 and T ′

2 diagrams contributing to
B → Kππ (as this is a b̄ → s̄ transition, the diagrams are written with
primes).

Note: unlike the 2-body diagrams, the 3-body diagrams are momentum
dependent. This must be taken into account whenever the diagrams
are used. FPCP2013 – p.5



EWP-Tree Relations
As is the case in two-body decays, under flavor SU(3) there are
relations between the EWP and tree diagrams for b̄ → s̄ transitions.
Taking c1/c2 = c9/c10 (which holds to about 5%), these take the simple
form

P ′

EWi = κT ′

i , P ′C
EWi = κC ′

i (i = 1, 2) ,

where

κ ≡ −3

2

|λ(s)
t |

|λ(s)
u |

c9 + c10

c1 + c2
,

with λ
(s)
p = V ∗

pbVps.

∃ important caveat. Under SU(3), the final state in B → Kππ involves
three identical particles, so that the six permutations of these particles
must be taken into account. But the EWP-tree relations hold only for
the totally symmetric state. This state, Mfs (‘fs’ = ‘fully symmetric’), is
found by symmetrizing M(s12, s13) under all permutations of 1,2,3.
The analysis must therefore be carried out for this state.
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B → Kππ and B → KKK̄

We consider the 5 decays B0
d → K+π0π−, B0

d → K0π+π−,
B+ → K+π+π−, B0

d → K+K0K−, and B0
d → K0K0K̄0. The

B → Kππ amplitudes are written in terms of diagrams with a popped
uū or dd̄ quark pair (these are equal under isospin); the diagrams of
the B → KKK̄ amplitudes have a popped ss̄ pair. But flavor-SU(3)
symmetry (needed for EWP-relations) implies that all diagrams are
equal, so that the 5 amplitudes are written in terms of the same
diagrams.

Note, however, that flavor-SU(3) symmetry is not exact. It is therefore
important to keep track of a possible difference between B → Kππ

and B → KKK̄ decays.
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Can combine the diagrams into “effective diagrams:”

a ≡ −P̃ ′

tc + κ

(

2

3
T ′

1 +
1

3
C′

1 +
1

3
C′

2

)

,

b ≡ T ′

1 + C′

2 , c ≡ T ′

2 + C′

1 , d ≡ T ′

1 + C′

1 .

The decay amplitudes can now be written in terms of five diagrams,
a-d and P̃ ′

uc:

2A(B0
d → K+π0π−)fs = beiγ − κc ,

√
2A(B0

d → K0π+π−)fs = −deiγ − P̃ ′

uce
iγ − a + κd ,

√
2A(B+ → K+π+π−)fs = −ceiγ − P̃ ′

uce
iγ − a + κb ,

√
2A(B0

d → K+K0K−)fs = αSU(3)(−ceiγ − P̃ ′

uce
iγ − a + κb) ,

A(B0
d → K0K0K̄0)fs = αSU(3)(P̃

′

uce
iγ + a) ,

where αSU(3) measures the amount of flavor-SU(3) breaking.
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Now, we have A(B+ → K+π+π−)fs = A(B0
d → K+K0K−)fs in the

flavor-SU(3) limit (|αSU(3)| = 1) =⇒ the B+ decay does not furnish any
new information. The remaining four amplitudes depend on 10
theoretical parameters: 5 magnitudes of diagrams, 4 relative phases,
and γ. But ∃ 11 experimental observables: the decay rates and direct
asymmetries of each of the 4 processes, and the indirect asymmetries
of B0

d → K0π+π−, B0
d → K+K0K− and B0

d → K0K0K̄0. With more
observables than theoretical parameters, γ can be extracted from a fit.

If one allows for SU(3) breaking (|αSU(3)| 6= 1), we can add two more
observables: the decay rate and direct CP asymmetry for the B+

decay. In this case it is possible to extract γ even with the inclusion of
|αSU(3)| as a fit parameter.

Note: diagrams and observables are both momentum dependent =⇒
above method for extracting γ in fact applies to each point in the Dalitz
plot. Since the value of γ is independent of momentum, the method
really represents many independent measurements of γ. These can be
combined, reducing the error on γ.
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Isobar Analysis
How to obtain the observables? The B → P1P2P3 amplitude is written
as

M(s12, s13) = NDP

∑

j

cje
iθjFj(s12, s13) ,

where the index j runs over all resonant and non-resonant
contributions. Each contribution is expressed in terms of isobar
coefficients cj (amplitude) and θj (phase), and a dynamical wave
function Fj . The Fj take different forms depending on the contribution.
The cj and θj are extracted from a fit to the Dalitz-plot event
distribution.

BABAR has performed such fits for each of the five decays of interest.
B

0
d
→ K

+
π

0
π
−: J. P. Lees et al., Phys. Rev. D 83, 112010 (2011); B

0
d
→ K

0
π

+
π
−:

B. Aubert et al., Phys. Rev. D 80, 112001 (2009); B
+

→ K
+

π
+

π
−: B. Aubert et al., Phys.

Rev. D 78, 012004 (2008); B
0
d
→ K

+
K

0
K

−: J. P. Lees et al., Phys. Rev. D 85, 112010

(2012); B
0
d
→ K

0
K

0
K̄

0: J. P. Lees et al. Phys. Rev. D 85, 054023 (2012). Given the
cj , θj and Fj , we reconstruct the amplitude for each decay as a
function of s12 and s13. We then construct Mfs by symmetrizing under
all permutations of 1,2,3. This process is repeated for the
CP-conjugate process, where we construct Mfs. FPCP2013 – p.10



The experimental observables are then obtained as follows:

X(s12, s13) = |Mfs(s12, s13)|2 + |Mfs(s12, s13)|2 ,

Y (s12, s13) = |Mfs(s12, s13)|2 − |Mfs(s12, s13)|2 ,

Z(s12, s13) = Im
[

M∗

fs(s12, s13) Mfs(s12, s13)
]

.

The experimental error bars on these quantities are found by varying
the input isobar coefficients over their 1σ-allowed ranges. The effective
CP-averaged branching ratio (X), direct CP asymmetry (Y ), and
indirect CP asymmetry (Z) may be constructed for every point on any
Dalitz plot. However, Z can be measured only for B0

d decays to a CP
eigenstate.

One technical point: in its KSKSKS analysis, BABAR takes
A(B0

d → KSKSKS) = A(B̄0
d → KSKSKS). This implies that (i) Y and

Z vanish for every point of the Dalitz plot, and (ii) the (small) unknown
P̃ ′

uc must be set to zero. The removal of an equal number of unknown
parameters (amplitude and phase of P̃ ′

uc) and observables does not
affect the viability of the method. FPCP2013 – p.11



Since the amplitudes used to construct the observables are fully
symmetric under the interchange of the three Mandelstam variables,
only one sixth of the Dalitz plot provides independent information. In
order to avoid multiple counting, we divide each Dalitz plot into six
zones by its three axes of symmetry, and use information only from
one zone:
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Kinematic boundaries and sym-
metry axes of the B → Kππ and
B → KKK̄ Dalitz plots. The
symmetry axes divide each plot
into six zones, five of which are
marked 2-6. The fifty points in
the region of overlap of the first
of six zones from all Dalitz plots
are used for the γ measurement.
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Maximum Likelihood Fit
For each of the fifty points in the first Dalitz-plot zone, we construct the
χ2 function, which we then minimize over all the hadronic parameters
for that point. The sum of such functions over all fifty points gives us a
joint likelihood distribution. The local minima of this function are then
identified as the most-likely values of γ. The 1σ error bars on γ are
given by the condition that ∆χ2 = 1.

We perform 3 types of fit:

1. Flavor SU(3) is a good symmetry =⇒ |αSU(3)| = 1. The fit involves
only the four B0 decay channels.

2. SU(3) breaking is allowed and treated as follows. The ratio of X ’s
is constructed point by point from the Dalitz plots for
B+ → K+π+π− and B0 → K+K0K−, giving |αSU(3)|2(s12, s13).
We use |αSU(3)| found in this way to correct the observables from
the B → KKK̄ Dalitz plots and use the corrected numbers in a
new maximum-likelihood analysis for finding γ.

3. We consider observables from all five Dalitz plots but now include
|αSU(3)| as an additional unknown hadronic parameter.
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Results of maximum-likelihood fits. The solid (black) curve represents
the fit assuming flavor-SU(3) symmetry. The short dashes (red)
represent the fit where flavor-SU(3) breaking is fixed by a
point-by-point comparison of Dalitz plots for B+ → K+π+π− and
B0 → K+K0K−. The long dashes (blue) represent the fit with inputs
from five Dalitz plots and an extra hadronic fit parameter |αSU(3)|.

Very little difference among 3 fits. Consistent with result from fit 2:
averaged over the fifty points, we find |αSU(3)| = 0.97 ± 0.05. This
shows that, on average, SU(3) breaking is small.
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γ and Errors
There are four preferred values for γ:

(31+2
−3)

◦ , (77 ± 3)◦ , (258+4
−3)

◦ , (315+3
−2)

◦ .

Three of these indicate new physics (is this a “Kππ-KKK̄ puzzle”?),
but one solution – (77 ± 3)◦ – is consistent with the standard model.

In all cases, the error is small, 2-4◦. How to understand this? The key
point is that this method really involves 50 independent measurements
of γ. Roughly speaking, if each measurement has an error of ±20◦,
which is somewhat larger than other methods, then when we take a
naive average, we divide the error by

√
50, giving a final error of ∼ 3◦.

One potential source of error that has not been included in our method
is higher-order flavor-SU(3) breaking. Such breaking may arise due to
the nonzero mass difference between pions and kaons, and between
intermediate resonances. This said, the error due to leading-order
SU(3) breaking is small, and so it is unlikely that the error due to
higher-order SU(3) breaking is larger.
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CAVEAT: there is one very important error that has not been included,
and that can significantly affect our result. All errors considered so far
have been entirely statistical (even SU(3) breaking). But there is also
the systematic, model-dependent error associated with the isobar
analysis. This cannot be treated statistically, i.e., reduced by
averaging. This error was not given in the BABAR papers and so we
could not include it. Hopefully, the experimentalists themselves will
redo this analysis, including all errors.

Recall: the standard way to directly probe γ is via B± → DK± decays.
Although the two-body method is expected to be theoretically clean, it
is difficult experimentally, so that the present direct measurement has a
large error: γ = (66 ± 12)◦. The statistical error of 2-4◦ in the
three-body method is far smaller than the two-body error. If the
systematic error is not too large, the three-body method could well be
the best way to measure γ.
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Conclusions
About 2-3 years ago, it was shown that, theoretically, it is possible to
cleanly extract weak-phase information from 3-body B decays. In the
present study, we demonstrate that this is, in fact, true. Using real data
from BABAR, we extract the phase γ from B → Kππ and B → KKK̄
decays. We find that there is a fourfold discrete ambiguity for the
preferred value: γ = 31◦, 77◦, 258◦ or 315◦. However, in all cases, the
error is small, 2-4◦, and it includes leading-order SU(3) breaking. This
is due to the fact that, in this method, there are actually 50 independent
measurements of γ. When these are combined, the error is
considerably reduced.

The one thing that is missing is the systematic, model-dependent error
related to the isobar Dalitz-plot analysis. It is only the experimentalists
themselves who can properly include it. If the systematic error is not
too large, then the 3-body method will likely be the best one for
measuring γ. Furthermore, there are undoubtedly other applications
which can be done at LHCb or future B factories. Hopefully, the
experimentalists will begin to perform this type of analysis and answer
the outstanding question regarding the systematic error.
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