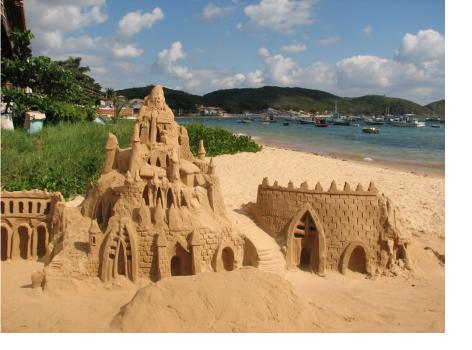


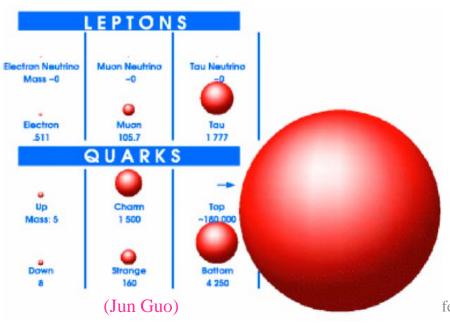
Many talks!

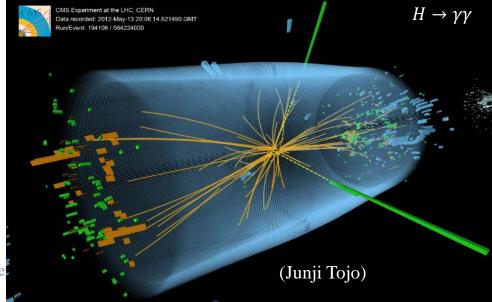

•	B -> D(*) tau nu and B-> tau nu	Andrzej Bozek
•	B decays with significant missing energy	Youngmin Yook
•	b production, both as hadron and jets	Jean Wicht
•	Baryonic B decays	Marcus Ebert
•	Bs and B0 -> mu mu rare decays	Jose Lazo-Flores
•	Bs-> mumu and B \rightarrow Xs gamma	Mikolaj Misiak
•	Charged Lepton flavour violation theory	Maxim Pospelov
•	Charm mixing and CPV	Alberto Reis
•	Charm spectroscopy and rare decays	Diego Milanes
•	Charmless 3-body B decays and gamma measurement	David London
•	Charmless semi-leptomic B decays at ee colliders	Cesar A. Beleño de la Barrera
•	Charmonium at ee colliders	XiaoLong Wang
•	CP violation in Bs oscillations at ATLAS, CMS and Teva	tron James Walder
•	CPT effects on CPV measurements	Ikaros Bigi
•	D meson Physics	Cheng-Wei Chiang
•	D0 mixing	Karim Trabelsi
•	Dimuon charge asymmetry in p pbar collisions	Bruce Hoeneisen
•	Exotic states and charmonia production	Tomasz Skwarnicki
•	Gamma from ee colliders	Matteo Rama
•	Highlights from BESIII	Roy Briere
•	ILC Status	Taikan Suehara
•	Lepton Flavour Violation	Giovanni Signorelli
•	LHCb upgrade	Renaud Le Gac
•	Light flavour at ee collider	Andreas Hafner
•	Limits on 4th generation fermions	Andrey Ivanov
•	Measurement of CP violation in Bs oscillations	Bruno de Paula

•	Measurement of D0 mass and D* natural linewidth	Gabriele Simi
•	Measurement of gamma from B->DK and related modes	Moritz Karbach
•	Measurement of the form factors of K+> pi0 1+- nu	Cristina Biino
•	Measurement of Theta13	Kwong Lau
•	Neutrino Physics	Mu-Chun Chen
•	Numu disappearance and numu CC Inclusive cross section	Alexander Finch
•	Phi2 measurement at ee colliders	Pit Vanhoefer
•	Quarkonium production at LHC	Cristina Biino
•	Radiative penguin at hadron machines	Kevin Stenson
•	Radiative Penguins at ee colliders	Gerald Eigen
•	Recent Development on CKM angles	Wei Wang
•	Recent progress in lattice QCD	Rachel Dowdall
•	Result on rare decays from NA62	Paolo Massarotti
•	Search for CPV in charm at ee colliders	Ryan White
•	Search for light Higgs and dark gauge bosons at ee collide	Sven Vahsen
•	Search for ttbar resonances	Jun Guo
•	Semileptonic mixing asymmetry measurements of assl and adsl	Martino Margoni
•	Sin 2 beta measurements	Riccardo de Sangr
•	Status of Belle-II	Bostjan Golob
•	Status of Higgs searches	Junji Tojo
•	Status of SUSY searches	Anna Lipniacka
•	Studies of charmless B decays, including CP violation effects	Irina Nasteva
•	Studies of hadronic B decays at LHC	Neus Lopez-March
•	Studies of rare FCNC b decays	Marc-Olivier Bett
•	Tau physics from ee collider	Steven Robertson
•	Theory Summary	Yuval Grossman
•	Three-body heavy meson decays: final state interaction	Manoel Robilotta
•	Top properties	Jacob Linacre
•	Unitarity triangle sides from ee colliders	Phillip Urquijo

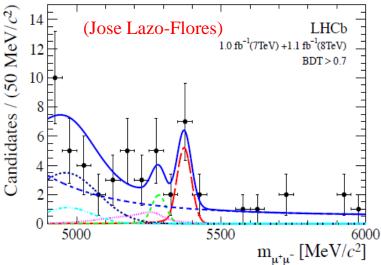
Won't be able to cover all the results or all the talks...

Apologies if I left out your talk. Will nonetheless try to touch on all topics. Please correct me if I got something wrong.



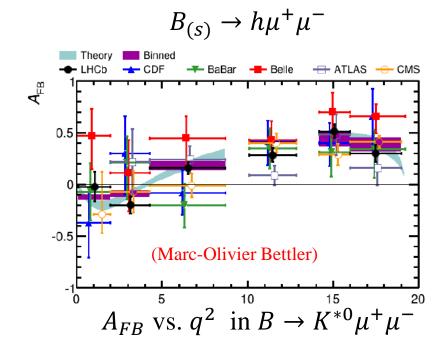

How is it constructed? ——— An idea...——— Be there at the right time

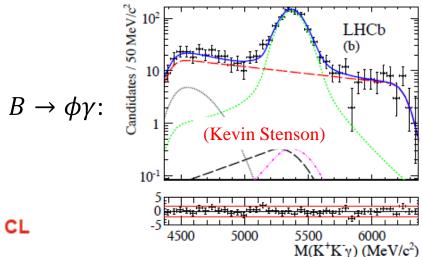
What causes it? A theory... The right measurement



LHC: new era for exclusive rare decays

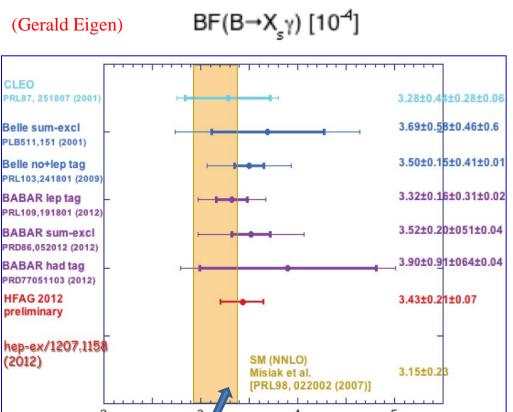
First evidence for $B_{(s)} \to \mu^+ \mu^-$

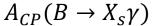

LHCb 3.5 σ result:

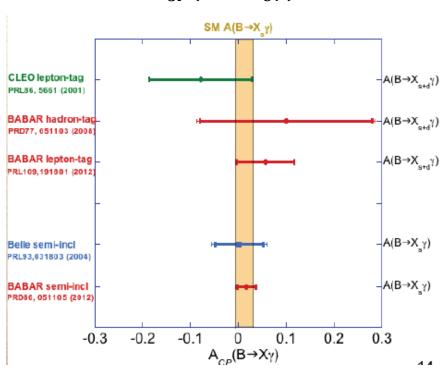

$$\overline{\mathcal{B}}_{\rm exp} = \left(3.2^{+1.5}_{-1.2}\right) \times 10^{-9}$$

Good agreement with the SM:

$$\overline{\mathcal{B}}_{\rm SM} = (3.67 \pm 0.21) \times 10^{-9}$$


Consistent with limits from CDF, D0, ATLAS, CMS

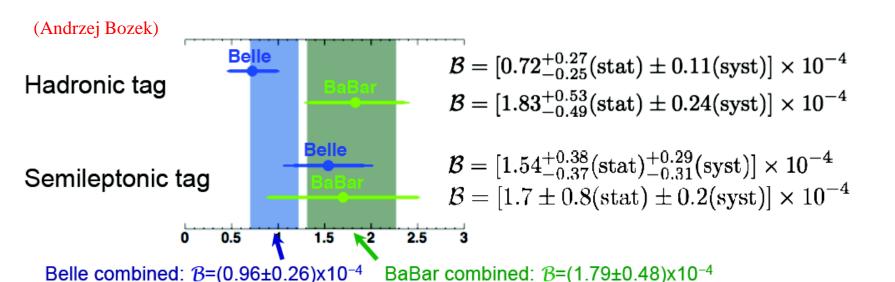




(Diego Milanes): LHCb: BF(D $^0\rightarrow \mu^+\mu^-$)<7.6x10 $^-$ 9 @95% CL

Inclusive EW penguins: B factories

(Mikolaj Misiak)


Update of the SM prediction (preliminary)

$$\mathcal{B}(\bar{B} \to X_s \gamma)_{E_{\gamma} > 1.6 \text{ GeV}}^{\text{SM}} = (3.14 \pm 0.22) \times 10^{-4}$$
 r, FPCP 2013

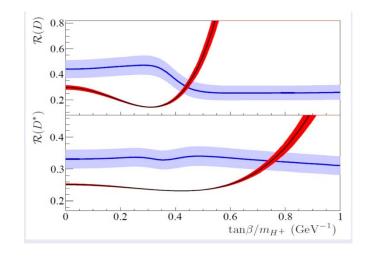
All results consistent with the SM,

→ strong NP constraints

$B \to \tau \nu$: tension with SM is gone

Naive world average $\mathcal{B} = (1.15 \pm 0.23) \times 10^{-4}$

Consistency with the SM:

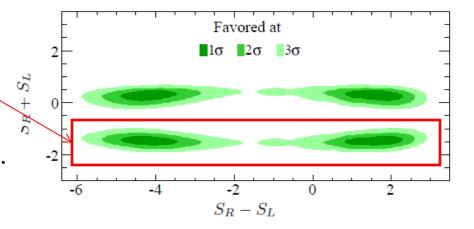

$B \to D^{(*)} \tau \nu$: tension persists

2HDM type-II (~MSSM) disfavored at >99.8%, since $B \to D\tau\nu$ and $B \to D^*\tau\nu$ disagree on $\tan\beta/m_{H^+}$:

(Andrzej Bozek)

Belle and BABAR average deviation from SM

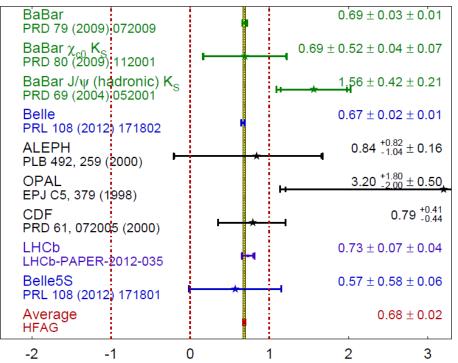
- R(D̄*) 3.8σ
- R(D̄) 2.4σ
- R(D(*)) 4.8σ



Allowed region in (real) parameter space for type-III 2HDM:

Excluded $@ > 2.9 \sigma$ by q^2 dist.

Need to verify:


- Final results from Belle expected soon.
- LHCb (with $\tau \to 3\pi\nu$ "not hopeless")

CKM angles: β (ϕ_1)

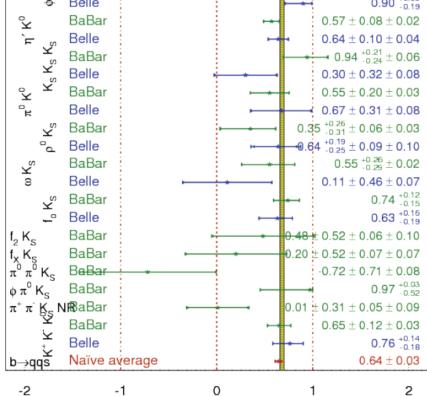
(Wei Wang)

$$\sin(2\beta) \equiv \sin(2\phi_1) \frac{\text{HFAG}}{\text{CKM 2012}}$$

LHCb will match B-factory sensitivity only after the upgrade (more below)

(Riccardo de Sangro) $\sin 2\beta$ in $b \rightarrow q\bar{q}s$

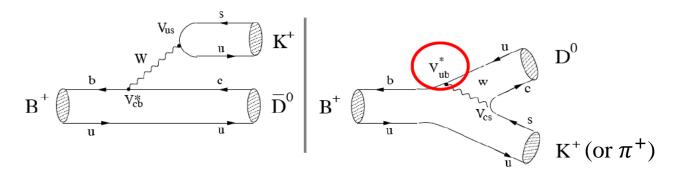
$$sin(2\beta^{eli}) \equiv sin(2\phi_1^{eli}) \frac{\text{HFAG}}{\text{Moriond 2012}}$$


$$b \rightarrow ccs \quad \text{World Average}$$

$$c \rightarrow \text{BaBar}$$

$$c \rightarrow \text{Belle}$$

$$c \rightarrow \text{BaBar}$$


$$c \rightarrow \text{$$

CKM angles: γ (ϕ_3)

(Matteo Rama, Moritz Karbach)

A variety of methods exploiting interference between the $B \to DK$ diagrams

Belle:

B-factory average: LHCb w. 3 fb⁻¹:

$$\gamma = (69^{+17}_{-16})^{\circ}$$

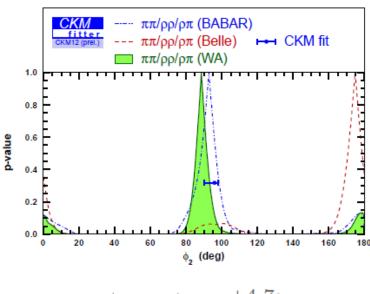
$$\gamma = (68^{+15}_{-14})^{\circ}$$

$$\gamma = (67 \pm 11)^{\circ}$$

$$\gamma = (69^{+17}_{-16})^{\circ}$$
 $\gamma = (68^{+15}_{-14})^{\circ}$ $\gamma = (67 \pm 11)^{\circ}$ $\gamma = (67 \pm 12)^{\circ}$

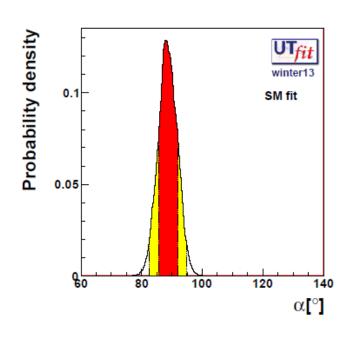
→ Expect slow improvement at LHCb with luminosity

(Wei Wang) Suggests use of new mode: $B \to DK_{0,2}^*$


(David London) $B \to KKK \& \pi\pi\pi \to \gamma = 77^{\circ} \pm 3^{\circ}$, error << than for "flagship" $B \to DK$

- Concern over simple SU(3) breaking implementation
- David & collaborators will explore ways to study systematic error experimentally.
- Experimentalists should explore optimal binning of Dalitz plot.

CKM angles: α (ϕ_2)


(Pit Vanhoefer)

(frequentist)

$$\phi_2/\alpha = (88.5^{+4.7}_{-4.4})^{\circ}$$

(bayesian)

$$\phi_2/\alpha = (88.7 \pm 3.1)^{\circ}$$

But note that $B \to \rho \pi$ should not be used – not robust with current statistics. Comment: Subtract β and convert to a measurement of γ

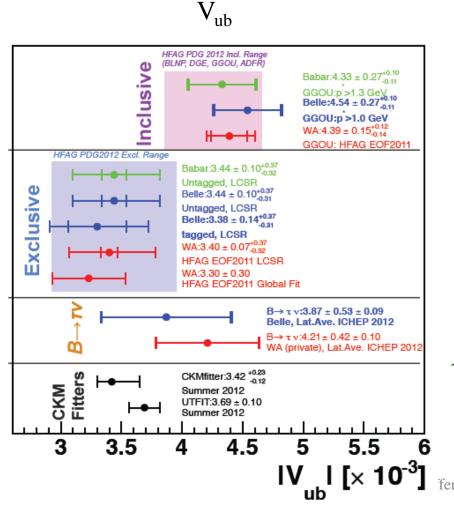
Direct CP asymmetries in b & c decays

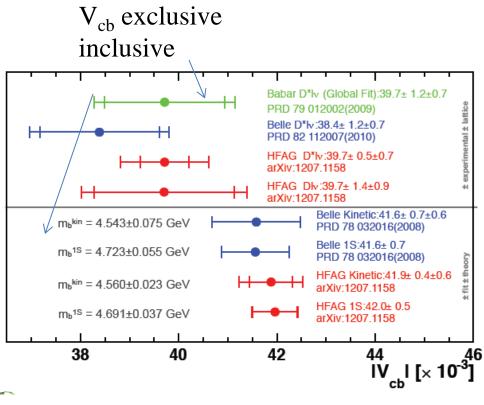
 A_{CP} in $B_{(s)}^0 \to K\pi$ from LHCb: (Irina Nasteva)

```
A_{CP}(B^0) = -0.080 \pm 0.007(\text{stat}) \pm 0.003(\text{syst})
A_{CP}(B^0_S) = 0.27 \pm 0.04(\text{stat}) \pm 0.01(\text{syst})
6.50
• First observation of direct CP violation in the B<sub>S</sub> system.
                                                                                                                                                                                     10.5\sigma
```

- Most precise measurement of $A_{CP}(B^0 \to K^-\pi^+)$.
- Agreement with the SM: $\Delta = \frac{A_{CP}(B^0 \to K^+\pi^-)}{A_{CP}(B^0 \to K^-\pi^+)} + \frac{\mathcal{B}(B^0_s \to K^-\pi^+)}{\mathcal{B}(B^0 \to K^+\pi^-)} \frac{\tau_d}{\tau_s} = 0. \quad \text{H.J. Lipkin,} \\ \text{PLB621 (2005) 126}$

$$\Delta = -0.02 \pm 0.05 \pm 0.04$$

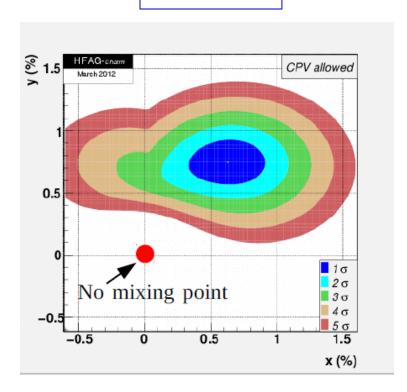

(Aberto Dos Reis) LHCb's $\Delta A_{CP} = A_{CP}(D^0 \to K^+K^-) - A_{CP}(D^0 \to \pi^+\pi^-)$ with prompt D was $(-0.82 \pm 0.21 \pm 0.11)\%$ with 0.6 fb⁻¹. Now: $(-0.34 \pm 0.15 \pm 0.10)\%$ after adding 0.4 fb⁻¹, better reco'


After adding D's from B decays, average is $(-0.15 \pm 0.16)\%$

CKM sides:

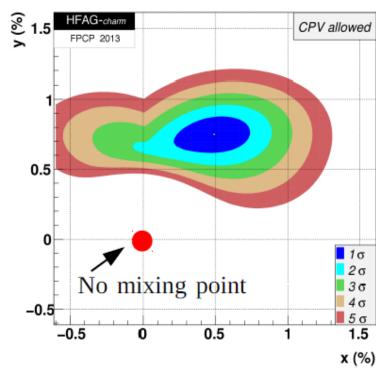
inclusive-exclusive tension persists

(Phillip Urquijo, Cesar Beleno)



(Christina Biino) $K^+ \to \pi^0 l^+ \nu$ analysis at NA48 ~done. V_{us} extraction soon.

$D^0 - \overline{D}^0$ mixing


(Karim Trabelsi)

FPCP 2012

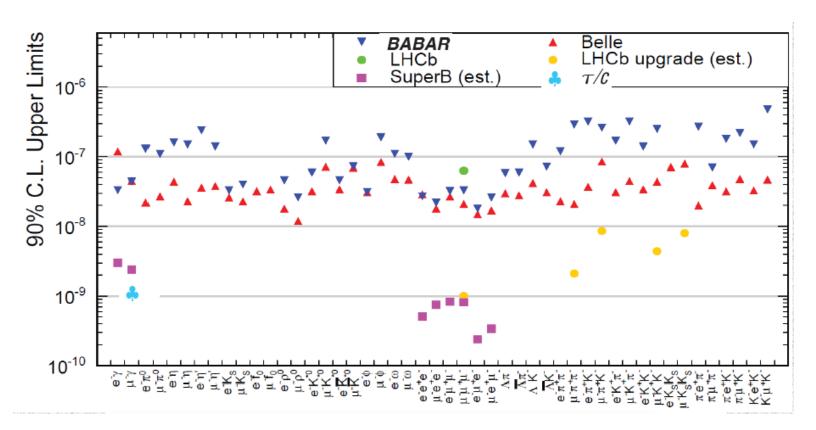
$$x = (0.63^{+0.19}_{-0.20})\%$$

 $y = (0.75 \pm 0.12)\%$

FPCP 2013

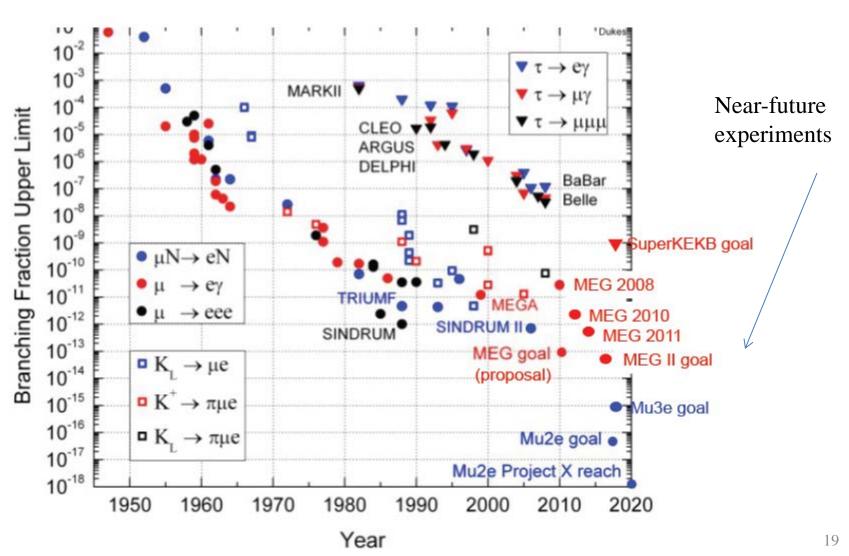
$$x = (0.49^{+0.17}_{-0.18})\%$$

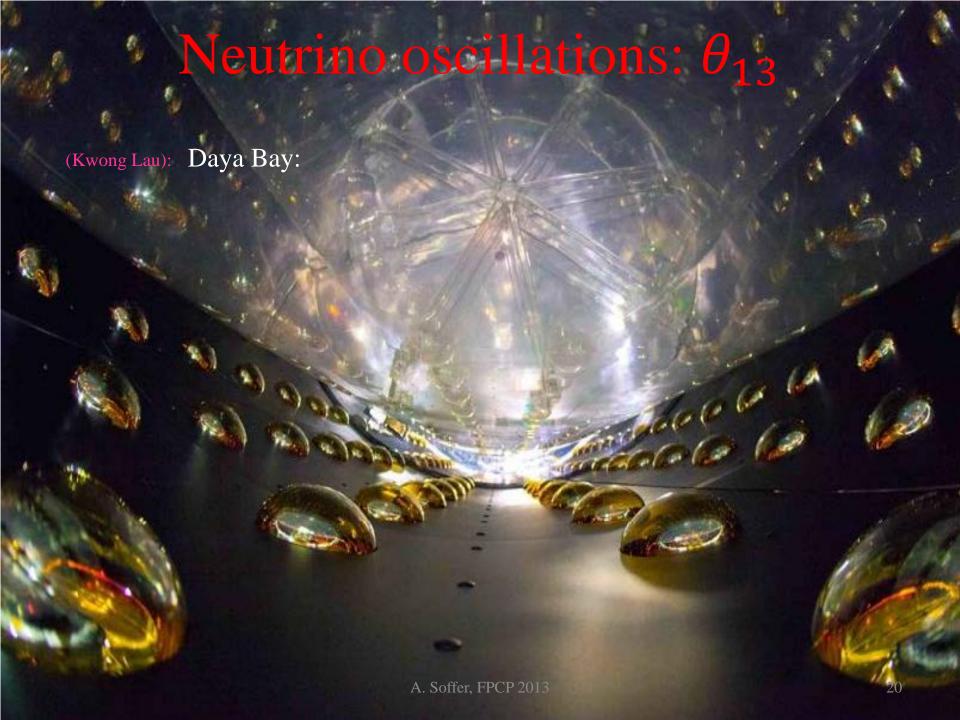
 $y = (0.75 \pm 0.09)\%$

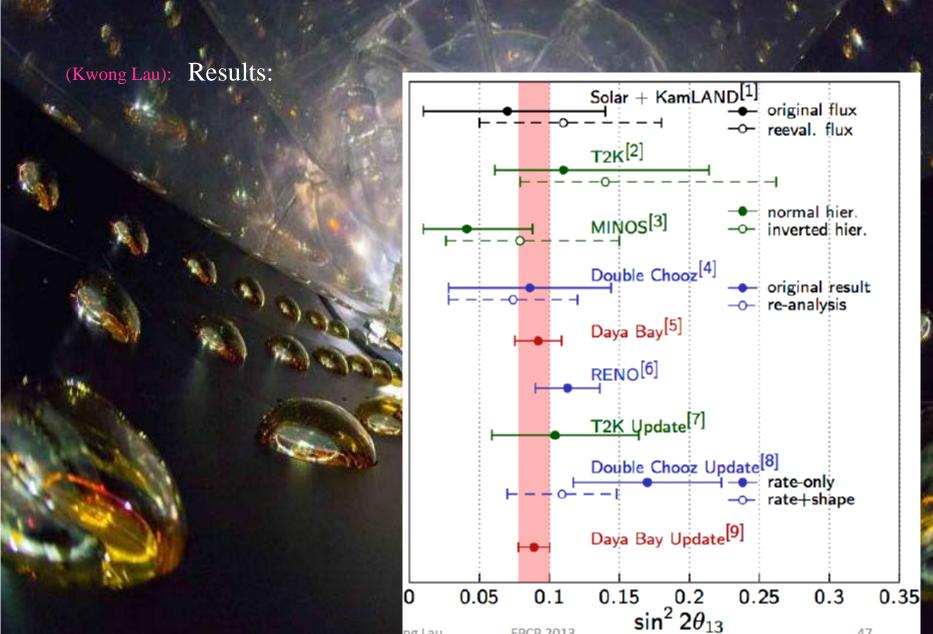

τ decays

(Steve Robertson): CPV in $\tau \to K_S \pi \nu$

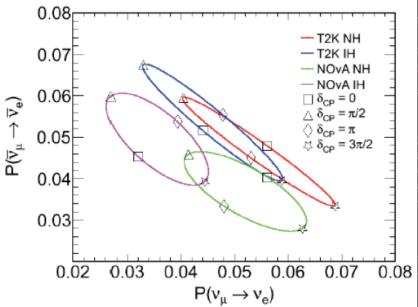
 $A_Q = (-0.36 \pm 0.23 \pm 0.11)\%$ SM prediction: $(0.36 \pm 0.01)\%$

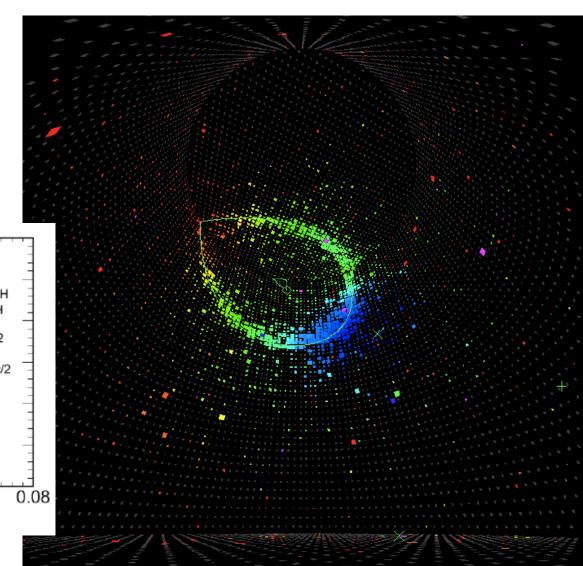

~2.8\sigma tension with SM prediction


(Giovanni Signorelli): LFV in τ decays


LFV in μ & K decays

(Giovanni Signorelli):


Neutrino oscillations: θ_{13}

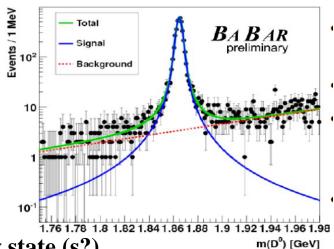


T2K $\nu_{\mu} \rightarrow \nu_{e}$ candidate #11

(Alex Finch):

T2K and NOvA will have some sensitivity to δ , if its value is good

Charm

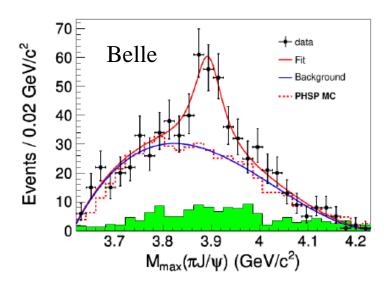

(Gabriele Simi):

Precision measurement of charm parameters

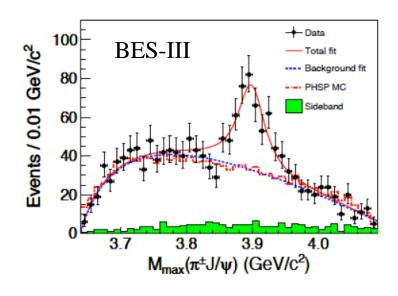
$$M(D_0) = 1864.841 \pm 0.048 \pm 0.062 \text{ MeV/c}^2$$

$$\Delta$$
m=m(D*)-m(D0)=145425.8 ± 0.5 ± 1.8 keV/c²

$$\Gamma(D^*) = 83.3 \pm 1.3 \pm 1.4 \text{ keV/c}^2$$



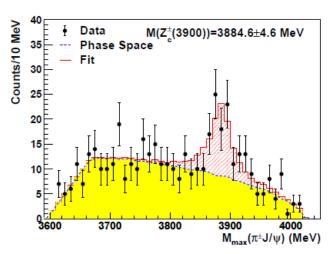
(Diego Milanes): Excited charm mesons at LHCb, new state (s?)


			LI	LHCb Preliminary Character 100	New
	Resonance	Final state	Mass (MeV)	Width (MeV)	Significance
Unnatural parity	$D_1(2420)^0$	$D^{*+}\pi^{-}$	$2419.6 \pm 0.1 \pm 0.7$	$35.2 \pm 0.4 \pm 0.9$	
Natural parity	$D_2^*(2460)^0$	$D^{*+}\pi^-$	$2460.4 \pm 0.4 \pm 1.2$	$43.2 \pm 1.2 \pm 3.0$	
Seen only in D*π, 1- 2S D₁(2618)	$D_J^*(2650)^0$	$D^{*+}\pi^{-}$	$2649.2 \pm 3.5 \pm 3.5$	$140.2 \pm 17.1 \pm 18.6$	24.5 (15.9)
Natural parity	$D_J^*(2760)^0$	$D^{*+}\pi^{-}$	$2761.1 \pm 5.1 \pm 6.5$	$74.4 \pm 3.4 \pm 37.0$	10.2 (6.0)
Seen by BaBar, unnatural parity 0		$D^{*+}\pi^{-}$	$2579.5 \pm 3.4 \pm 5.5$	$177.5 \pm 17.8 \pm 46.0$	18.8 (13.1)
Unnatural parity, 1- like 1D D ₁ (2796)	$D_J(2740)^0$	$D^{*+}\pi^-$	$2737.0 \pm 3.5 \pm 11.2$	$73.2 \pm 13.4 \pm 25.0$	7.2 (4.7)
NEW compatible with unnatural par		$D^{*+}\pi^-$	2971.8 ± 8.7	188.1 ± 44.8	9.0 (3.7)
Natural parity	$D_2^*(2460)^0$	$D^+\pi^-$	$2460.4 \pm 0.1 \pm 0.1$	$45.6 \pm 0.4 \pm 1.1$	
Natural parity, 2⁻ like 1D D₂(2801)	$D_J^*(2760)^0$	$D^+\pi^-$	$2760.1 \pm 1.1 \pm 3.7$	$74.4 \pm 3.4 \pm 19.1$	17.3 (5.5)
NEW	$D_J^*(3000)^0$	$D^+\pi^-$	3008.1 ± 4.0	110.5 ± 11.5	21.2 (12.4)
Natural parity	$D_2^*(2460)^+$	$D^0\pi^+$	$2463.1 \pm 0.2 \pm 0.6$	$48.6 \pm 1.3 \pm 1.9$	
Natural parity, 2⁻ like 1D D₂(2801)	$D_J^*(2760)^+$	$D^0\pi^+$	$2771.7 \pm 1.7 \pm 3.8$	$66.7 \pm 6.6 \pm 10.5$	18.8 (8.3)
NEW	$D_J^*(3000)^+$	$D^0\pi^+$	3008.1 (fixed)	110.5 (fixed)	6.6 (5.1)

New $Z_c^+(3900)$ in $Y(4260) \to J\psi\pi\pi$?

(XiaoLong Wang)

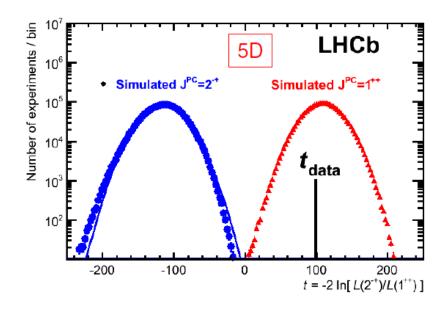
(Roy Briere)



Waiting for partial-wave analysis, off-resonance search.

Xiao et al, using CLEO $\psi(4160)$ data:

If real, what is it? Related to Z_h^+ ?...


Note: Y(4260) broad, but not seen in exclusive $D\overline{D}X$ decays. BES-III should measure inclusive $Y(4260) \rightarrow DX$

$J^{PC}=1^{++}$ for X(3872)

(Tomasz Skwarnicki)

LHCb has fewer events than previous analyses, but does a more detailed 5D fit:

Molecular interpretation favored.

I don't think it requires $m_X < m_D + m_{D^*}$) – e.g., α and neutron emission.

LHCb could significantly contribute to all exotica with J/ψ , e.g., $Z^+(3440)$

CPV and mixing in B_d and B_s

(Bruno Souza de Paula) LHCb results from $B_s \to J/\psi K^+K^-$ and $J/\psi \pi^+\pi^-$ (most precise)

$$\phi_s = 0.01 \pm 0.07 \text{ (stat)} \pm 0.01 \text{ (syst) rad,}$$
 $\Gamma_s = 0.661 \pm 0.004 \text{ (stat)} \pm 0.006 \text{ (syst) ps}^{-1},$
 $\Delta \Gamma_s = 0.106 \pm 0.011 \text{ (stat)} \pm 0.007 \text{ (syst) ps}^{-1}.$

(James Walder): Also from ATLAS, CMS, D0, CDF

(Bruce Hoeneisen):

D0's $A_{sl} \propto N(\mu^+\mu^+) - N(\mu^-\mu^-)$ is 3.9 σ from 0, disagrees with SM.

New: contamination from CPV in mixing-decay interference.

If the effect is "twice its estimated value, A_{sl} goes below "3 σ .

(Martino Margoni):

New BABAR results (most precise) on A_{sl} for B_d . Other than the D0 A_{sl} , all results are consistent with SM: —

Production charge asymmetry at LHC

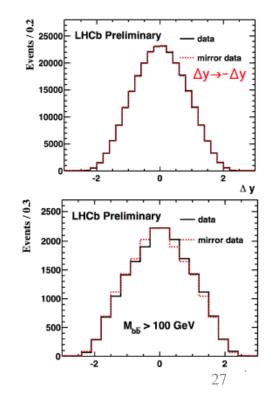
(Jacob Linacre)

Tevatron Forward-backward asymmetry for $t\bar{t}$ in tension with SM **ATLAS & CMS** can measure a related quantity:

(Jean Wicht)

$$A_C = \frac{N(|y_t| > |y_{\bar{t}}|) - N(|y_t| < |y_{\bar{t}}|)}{N(|y_t| > |y_{\bar{t}}|) + N(|y_t| < |y_{\bar{t}}|)}$$

LHC measurements consistent with SM ($A_C \approx 0.006$):


 $A_C = 0.004 \pm 0.015$ (CMS I+jets)

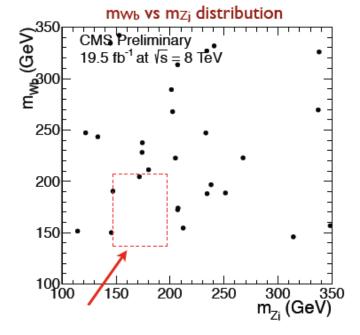
 $A_C = 0.029 \pm 0.023$ (ATLAS, I+j and

dilepton combined) ATLAS-CONF-2012-057

$$A_{\rm FB}^{b\bar{b}} = (0.5 \pm 0.5 \; ({\rm stat}) \pm 0.5 \; ({\rm syst}))\%$$

$$A_{\rm FB}^{b\bar{b}}(M_{b\bar{b}} > 100 \; {\rm GeV}) = (4.3 \pm 1.7 \; ({\rm stat}) \pm 2.4 \; ({\rm syst}))\%$$

 $b\overline{b}$ asymmetry from LHCb is consistent with SM


∃ Models that accommodate both Tevatron & LHC results

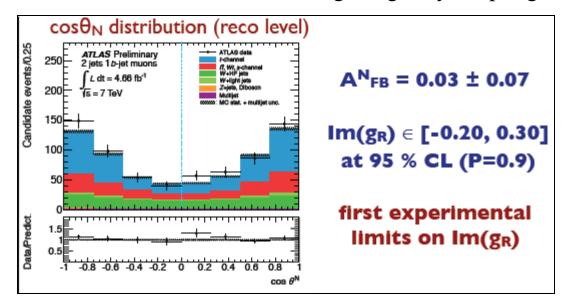
Top couplings and anomalous decays

(Jacob Linacre)

CMS search for $t \rightarrow Zq$

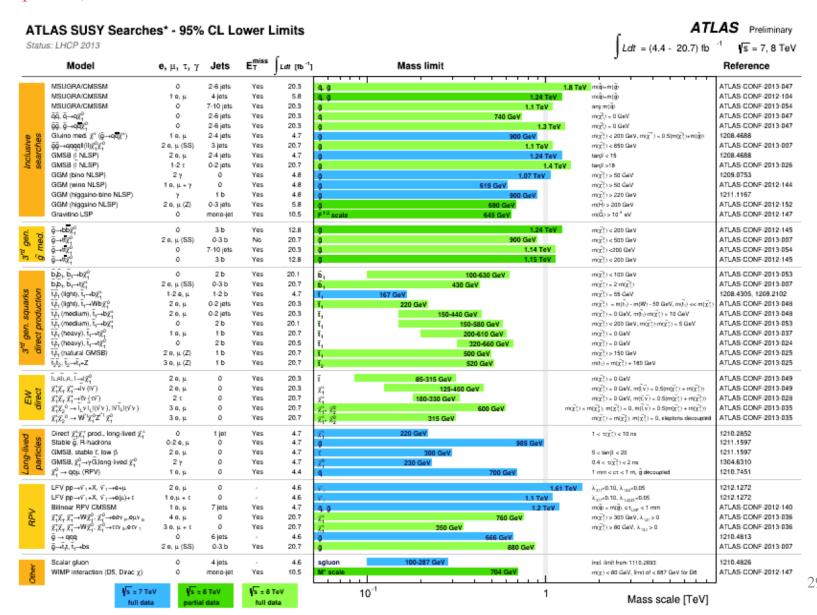
$$\mathcal{B}(t \to Zq) < 0.07\%$$
 (95% CL)

1 event in signal box


CMS: Ratio of
$$\frac{B(t \rightarrow Wb)}{B(t \rightarrow Wq)}$$

$$\mathcal{R} = 1.023^{+0.036}_{-0.034} \text{ (stat+syst)}$$

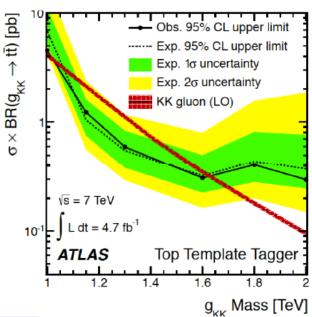
R > 0.945 at 95% CL


$$|V_{
m tb}|>$$
 0.972 at 95% CL (using ${\cal R}=|V_{
m tb}|^2$)

ATLAS search for CP-violating imaginary coupling:

SUSY limits (similar list from CMS)

(Anna Lipniacka)

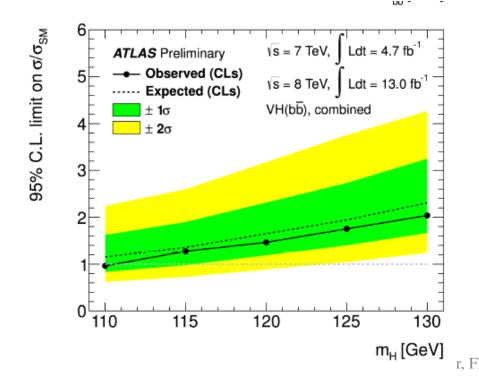


More flavor-related searches

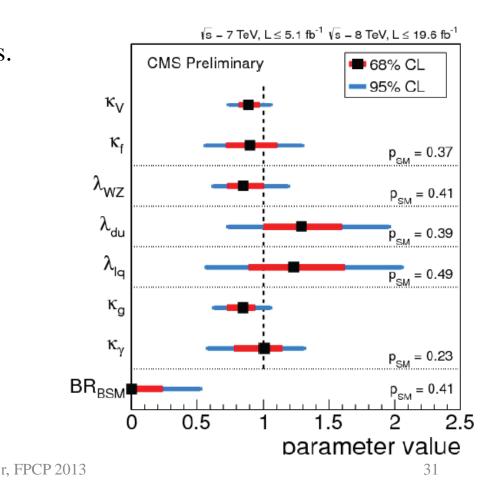
(Andrew Ivanov)

4th generation

Mass, Dominant Decay	Limit @ 95% C.L.	Experiment, Channel	10
m(t′), t′ → Wb	> 656 GeV	ATLAS, I+jets	10
m(t'), t' → Ht	>~850 GeV	ATLAS, I+jets	
m(t'), t' → Zt	> 625 GeV	CMS, l+jets	
m(t',b'), t', b' → Wq	> 350 GeV	ATLAS, OS dilepton	
m(b′), b′ → Wt	> 760 GeV	CMS, multi-lepton	
m(b′), b′ → Zb	> 660 GeV	CMS, multi-lepton	
Inclusive t', b'	> 685 GeV	CMS, multi-channel	
m(t'), SU(2) singlet	> 640 GeV	ATLAS, I+jets	
m(b'), SU(2) singlet	> 590 GeV	ATLAS, SS dilepton	
m(t'), SU(2) doublet	> 790 GeV	ATLAS, I+jets	
m(t'), t' → tg	> 794 GeV	CMS, I+jets	

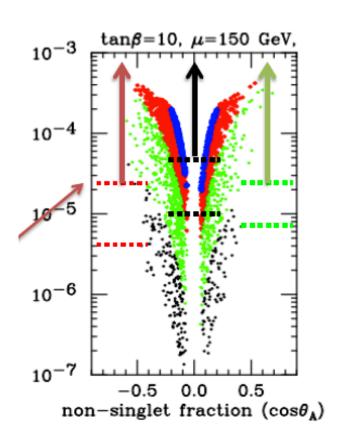

(Jun Guo)

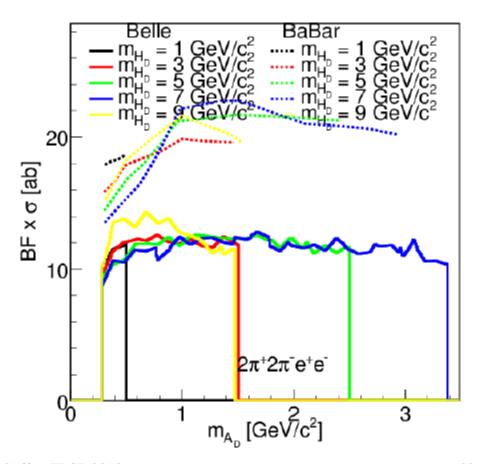
tt resonance,
e.g., KK-gluon


Higgs at ~125 GeV

(Junji Tojo)

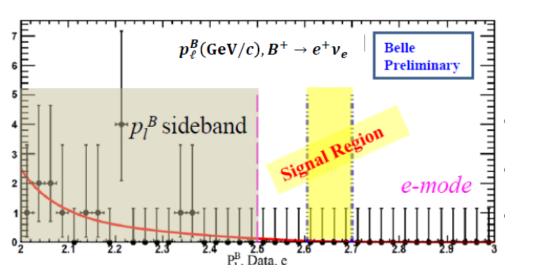
Decays to vector bosons well established. No sensitivity yet @ SM level to fermions. E.g., $b\bar{b}$ coupling limits:


Couplings are consistent with SM only:

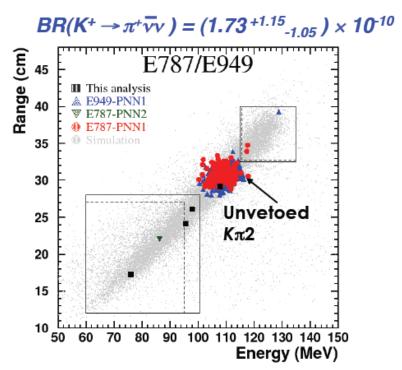

Light Higgs and dark photons

(Sven Vahsen)

nMSSM parameter space highly restricted by B factories



Dark photon: Belle halves limits production in Higsstrahlung scenario


Limits on suppressed decays with neutrinos

(Youngmin Yook) New $B \rightarrow l\nu$ limits from Belle

(Paolo Massarotti)

 $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ limit from E787/E949

No inconsistency with SM detected

Hadronic decays and production

(Neus Lopez March)

Hadronic B decays @ LHCb

$$\mathbf{B}^+ \to \mathbf{D}^+\mathbf{s} \Phi$$

$$(5)/(10) = A$$

$$(5)/(10) = A$$

$$(6.7 - 2.6)$$

$$(7 - 2.6)$$

$$(8 - 2.6)$$

$$(8 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

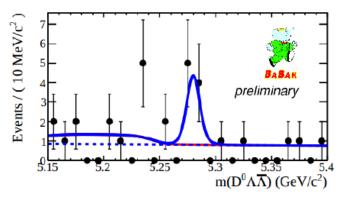
$$(9 - 2.6)$$

$$(9 - 2.6)$$

$$(9 - 2.6)$$

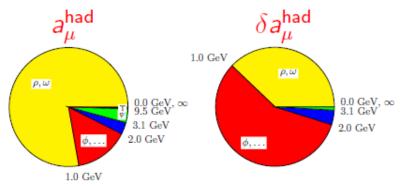
$$(9 - 2.6)$$

$$(9 - 2.6)$$


$$(9 - 2.6)$$

$$(9 - 2.6)$$

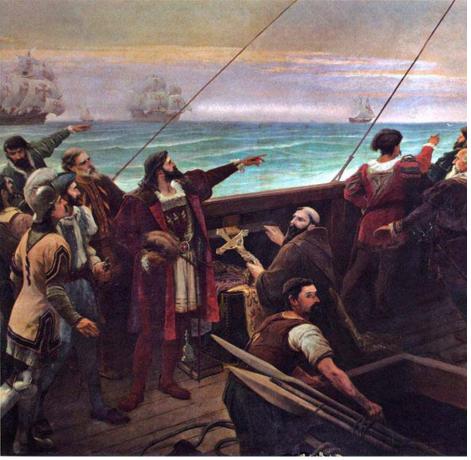
$$(9 - 2.$$


(Marcus Ebert)

Baryonic B decays @ BABAR

(Andreas Hafner)

Hadronic contributions to g-2


[PR 477, 1 (2009).]

$$a_{\mu}^{had}(K^+K^-) = 216.3 \pm 2.7 \pm 6.8$$
 \downarrow $a_{\mu}^{had}(K^+K^-) = 229.5 \pm 1.4 \pm 2.2$ calculation only based on BABAR 2013 data!

Experimental snapshot

- SM appears fully established
- No clear sign of physics beyond the SM
- But several $3\sigma 4\sigma$ discrepancies persist
 - − $A_{FB}^{t\bar{t}}$ (Tevatron), inclusive A_{Sl}^{s} (D0), $B \to D^*\tau\nu$ (B factories)...
 - (Talks by Jean Wicht, Martino Margoni, Bruce Hoeneisen, Andrzej BOZEK)
- Others have disappeared
 - $\Delta A_{CP}^{D^0}$ (LHCb), and maybe inclusive A_{sl}^s (D0)
 - (Talk by Alberto Dos Reis, Bruce Hoeneisen)
- What does nature have in store for us in the coming decade?...

Pedro Álvares Cabral Brazil 1500

Robert Falcon Scott Antarctica 1912

Things are exciting now

- LHC experiments are in full swing
- B factories still productive (31/28 BABAR/Belle papers in 2012)
- Neutrino experiments having new results
- Etc....

Getting even more exciting soon

- LHC 13 TeV 2014
- NA62 sensitivity to $K^+ \to \pi^+ \nu \bar{\nu} \sim \text{current CKM} 2017$
- LHCb upgrade 2018
- Belle-II 2018
- New LFV expts. (Mu2e, COMET) 2022
- T2K, NOvA may glimpse at CPV
- Maybe ILC on the horizon

• Encourage Chinese HEP community to compete with Italy & Russia for τ-charm factory – role of mid-size facilities in LHC era. A. Soffer, FPCP 2013

Thank you for the wonderful conference. See you in Marseille

