Results On ϕ_2 From e^+e^- Colliders

Pit Vanhoefer on behalf of the

Belle Collaboration

Max-Planck-Institut für Physik, München

pvanhoef at mpp.mpg.de

 ϕ_2/α : Decays covered in this talk

- a) $B
 ightarrow \pi\pi$
- b) B
 ightarrow
 ho
 ho
- c) $B^0 \to (\rho \pi)^0$
- d) $B^0
 ightarrow a_1^\pm \pi^\mp$

ϕ_2

Introduction

- $\bullet\,$ Measure properties of unitarity triangle to test CKM mechanism: 2 sides, 3 angles
- Time-dependent decay rate of a B or a \bar{B} meson decaying into common CP eigenstate

$$\mathcal{P}(\Delta t) = \frac{e^{-|\Delta t|/\tau_{B^0}}}{4\tau_{B^0}} \left\{ 1 + q \left[\mathcal{S}_{CP} \sin(\Delta m_d \Delta t) + \mathcal{A}_{CP} \cos(\Delta m_d \Delta t) \right] \right\}$$

- \mathcal{A}_{CP} : direct CP violation (= $-\mathcal{C}_{CP}$)
- S_{CP} : mixing induced CP violation
- q: flavor of B_{tag} , q = +1 for $B_{tag} = B^0$
- $\bullet \ \tau_{B^0} : B \text{ life time} \\$
- Δm_d : mass difference of B_H and B_L
- Δt : decay time difference of B_{CP} and B_{tag}

Mixing Induced CP

Living With Pollution

 $b \to u$ ($\rho, \pi, ...$) at Tree level: $S_{CP} = \sin(2\phi_2)$ and no direct $\mathcal{CP}(\mathcal{A}_{CP} = 0)$

BUT more amplitudes (penguins) can contribute with different weak/strong phases

ϕ_2

Recover ϕ_2

• extraction of $\Delta \phi_2$ with isospin analysis (remove penguin pollution)

for unflavored isospin triplets, e.g. ρ,π

Bose statistics: \Rightarrow I=0,2 (final states);

tree I=0,2;

```
penguin: I=0 only (gluon)
```

allows to formulate relations of the

 $\operatorname{decay}\operatorname{amplitudes} A$

e.g.
$$\bar{A}^{+-} = \mathcal{A}(\bar{B} \to \rho^+ \rho^-)$$

- $\frac{1}{\sqrt{2}}A^{+-} + A^{00} = A^{+0}$ • $\frac{1}{\sqrt{2}}\bar{A}^{+-} + \bar{A}^{00} = \bar{A}^{-0}$
- $A^{+0} = \bar{A}^{-0}$ (no penguin)

M. Gronau and D. London, PRL 65 3381 (1990)

 \Rightarrow geometrical considerations reveal $\Delta \phi_2$

Data Samples

Integrated luminosity of B factories

 $B \to \pi^+ \pi$

 \Rightarrow clear mixing induced $C\!P$ and presence of penguins

$B \to \pi^+ \pi^-$

World averages

 \Rightarrow good agreements between experiments (prev. tension removed)

 $B \to \pi^0 \pi^0$

 π

 $B \to \pi \pi$

 ϕ_2/α constraints

Belle: $\phi_2 \in [85.0^\circ, 148.0^\circ]$, Babar: $\alpha \in [71^\circ, 109^\circ]$, WA: $\phi_2/\alpha = (87.1^{+17.5}_{-7.8})^\circ$

$$B \to \rho \rho$$

• $B \rightarrow \rho\rho$ $\rho \rightarrow \pi\pi$ • $S \rightarrow VV$ decay \hookrightarrow superposition of CP even and odd states \hookrightarrow separation through helicity analysis

• f_L : fraction of longitudinal polarization(LP, pure CP even final states)

$$\frac{1}{\Gamma} \frac{d^2 \Gamma}{d \cos \theta_{\text{Hel}}^1 d \cos \theta_{\text{Hel}}^2} = \frac{9}{4} \left(f_L \cos^2 \theta_{\text{Hel}}^1 \cos^2 \theta_{\text{Hel}}^2 + \frac{1}{4} (1 - f_L) \sin^2 \theta_{\text{Hel}}^1 \sin^2 \theta_{\text{Hel}}^2 \right)$$
naiv SM expectation: $f_L \sim 1 - \frac{m_V^2}{m_B^2} \sim 1$ difficult to predict for color-suppressed mode
 $B^0 \to \rho^0 \rho^0$

 $\bullet\,$ smaller statistics(exp.) less penguin pollution compared to $B\to\pi\pi$

 $\rightarrow \rho' \rho$

World average

Good agreements between experiments

$$\mathcal{A}_{CP}(=-\mathcal{C}_{CP})\approx 0$$

ightarrow small penguin contribution

 $\rightarrow \rho \rho$

 $\phi_2/lpha$ constraints

- small penguin contribution
- best environment for constraining ϕ_2 with 1st generation *B*-factories

Belle: $\phi_2 = (84 \pm 13)^\circ$, Babar: $\alpha = (92.4 \pm 6.4)^\circ$, WA: $\phi_2/\alpha = (89.9^{+5.4}_{-5.3})^\circ$

 $\rightarrow (\rho \pi)^0$

Not a CP eigenstate, need to consider the 4 flavour-charge configurations

Corresponding isospin analysis has 12 unknowns compared to 6 for CP eigenstates

• U/I fomalism instead of quasi-two-body(Q2B)

ightarrow 27 real free parameters

can be related to \mathcal{A}_{CP} and \mathcal{S}_{CP} parameters

• Dalitz plot sensitive to strong and weak phases of the interfering ρ resonances

(A. Snyder and H. Quinn, PRD **48** 2139 (1993))

 \Rightarrow possible to constrain ϕ_2 without ambiguity explicitly in the analysis !

$B^0 \to (\rho \pi)^0$

World averages for $B^0 \to \rho^\pm \pi^\mp$

 \mathcal{A}_{CP} is time and flavour-integrated CP asymmetry

 $\rho^+ \pi^+ A_{CP}$ HFAG ICHEP 2008 = BaBar $-0.14 \pm 0.05 \pm 0.02$ PRD 76 (2007) 012004 Belle $-0.12 \pm 0.05 \pm 0.04$ PRL 98 (2007) 221602 Average -0.13 ± 0.04 HFAG correlated average -0.26 -0.24 -0.22 -0.2 -0.18 -0.16 -0.14 -0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0 $\rho^{+}\pi^{+}C$ $\rho^{+}\pi^{+}S$ ICHEP 2008 ICHEP 2008 BaBar **BaBar** $\textbf{-0.03} \pm 0.11 \pm 0.04$ $0.15 \pm 0.09 \pm 0.05$ PRD 76 (2007) 012004 PRD 76 (2007) 012004 Belle Belle, $-0.13 \pm 0.09 \pm 0.05$ $0.06 \pm 0.13 \pm 0.05$ PRL 98 (2007) 221602 PRL 98 (2007) 221602 Average Average 0.01 ± 0.07 0.01 ± 0.09 HFAG correlated averad HFAG correlated average 0.1 0.1 0.2 0.3 -0.3 -0.2 -0.1 0 0.2 0.3 -0.3 -0.2 -0.1 0

NEW Babar Result

arXiv:1304.3503 (2013)

Param	Value \pm stat \pm syst
\mathcal{A}_{CP}	$-0.100 \pm 0.029 \pm 0.021$
\mathcal{C}	$0.016 \pm 0.059 \pm 0.036$
${\mathcal S}$	$0.053 \pm 0.081 \pm 0.034$
\mathcal{A}_{CP}^{+-}	$0.09^{+0.05}_{-0.06} \pm 0.04$
\mathcal{A}_{CP}^{-+}	$-0.10\pm0.08^{+0.04}_{-0.05}$

$$\mathcal{A}_{CP}^{+-} = -\frac{\mathcal{A}_{CP} + \mathcal{C} + \mathcal{A}_{CP} \Delta \mathcal{C}}{1 + \Delta \mathcal{C} + \mathcal{A}_{CP} \mathcal{C}}$$
$$\mathcal{A}_{CP}^{-+} = \frac{\mathcal{A}_{CP} - \mathcal{C} - \mathcal{A}_{CP} \Delta \mathcal{C}}{1 - \Delta \mathcal{C} - \mathcal{A}_{CP} \mathcal{C}}$$

 ΔC : rate asymmetry if ρ^{\pm} formed from spectator or not

Babar's result submitted to PRD

Belle is working on final update

Good agreement between experiments but difficult mode with current statistics

 ϕ_2 scan

- Solid line: incl. isospin constraints (\mathcal{B} and \mathcal{A}_{CP} of $B^+ \to \rho^+ \pi^0$, $\rho^0 \pi^+$)
- Dotted line: Use $B^0 \to (\rho \pi)^0$ results only

scan not robust with current statistic

 $\rightarrow (\rho \pi)$

 ϕ_2/α constraints (not incl. NEW Babar result)

• difficult to pin down ϕ_2 with $B^0 \to (\rho \pi)^0 {\rm now}$

one solution for ϕ_2 with higher statistics possible, \rightarrow higher luminosity experiments

24

Summary

- recent results on $B\to\pi^+\pi^-$ and $B\to\rho^0\rho^0$ from Belle and on $B\to(\rho\pi)^0$ from Babar
- tightest constraint from $B\to\rho\rho,$ best potential in $B\to(\rho\pi)^0$

(bayesian)

- some final results still anticipated
- LHCb entered the game, Belle2 under construction

BACKUP

27

reconstructed in 4 charged pion final state

arXiv:1205.5957

PRELIMINARY

Difficulties from huge continuum background and other 4 pion backgrounds

Extract branching fraction from 4 discriminating variables

Flavour non-specific final state \Rightarrow 5*CP* parameters

arXiv:1205.5957, PRELIMINARY

non CP eigenstate - final state, need to consider 4 flavour-charge configurations (q, c)

$$\mathcal{P}(\Delta t, q, c) = (1 + c\mathcal{A}_{CP}) \frac{e^{-|\Delta t|/\tau_{B^0}}}{8\tau_{B^0}} \left\{ 1 + q \left[(\mathcal{S}_{CP} + c\Delta \mathcal{S}) \sin \Delta m_d \Delta t - (\mathcal{C}_{CP} + c\Delta \mathcal{C}) \cos \Delta m_d \Delta t \right] \right\}$$

 \mathcal{A}_{CP} : Time and flavour-integrated direct CP violation

 \mathcal{C}_{CP} : Flavour-dependent direct CP violation

 \mathcal{S}_{CP} : Mixing-induced CP violation

 ΔC : Rate asymmetry between configurations where

 a_1 does not and does contain the spectator quark

 ΔS : Strong phase difference between configurations where a_1 does not and does contain the spectator quark

 $^{0} \rightarrow (\rho \pi)^{0}$

Time and amplitude differential decay rate,

$$\frac{d^{3}\Gamma}{d\Delta t ds_{+} ds_{-}} \propto e^{-|\Delta t|/\tau_{B^{0}}} \left\{ \left(|A_{3\pi}|^{2} + |\bar{A}_{3\pi}|^{2} \right) - q\left(|A_{3\pi}|^{2} - |\bar{A}_{3\pi}|^{2} \right) \cos \Delta m_{d} \Delta t + 2q\Im \left[\frac{q}{p} A_{3\pi}^{*} \bar{A}_{3\pi} \right] \sin \Delta m_{d} \Delta t \right\}$$
$$|A_{3\pi}|^{2} \pm |\bar{A}_{3\pi}|^{2} = \sum_{\kappa \in \{+,-,0\}} |f_{\kappa}|^{2} U_{\kappa}^{\pm} + \sum_{\kappa < \sigma \in \{+,-,0\}} 2(\Re[f_{\kappa}f_{\sigma}^{*}]U_{\kappa\sigma}^{\pm,\Re} - \Im[f_{\kappa}f_{\sigma}^{*}]U_{\kappa\sigma}^{\pm,\Im})$$
$$\Im \left[\frac{q}{p} A_{3\pi}^{*} \bar{A}_{3\pi} \right] = \sum_{\kappa \in \{+,-,0\}} |f_{\kappa}|^{2} I_{\kappa} + \sum_{\kappa < \sigma \in \{+,-,0\}} (\Re[f_{\kappa}f_{\sigma}^{*}]I_{\kappa\sigma}^{\Im} + \Im[f_{\kappa}f_{\sigma}^{*}]I_{\kappa\sigma}^{\Re})$$

27 coefficients $U\!,I$ determined from a fit to data

 $f\colon \ensuremath{\mathsf{Form}}$ factors and line shapes

 $B^0 \to (\rho \pi)^0$

Convert to Quasi-two-body parameters

For
$$B^0 o \rho^\pm \pi^\mp$$

$$U_{\kappa}^{\pm} = |A_{\kappa}|^{2} \pm |\bar{A}_{\kappa}|^{2}$$
$$U_{\kappa\sigma}^{\pm,\Re} = \Re[A_{\kappa}A_{\sigma}^{*} \pm \bar{A}_{\kappa}\bar{A}_{\sigma}^{*}]$$
$$U_{\kappa\sigma}^{\pm,\Im} = \Im[A_{\kappa}A_{\sigma}^{*} \pm \bar{A}_{\kappa}\bar{A}_{\sigma}^{*}]$$
$$I_{\kappa\sigma} = \Im[\bar{A}_{\kappa}A_{\sigma}^{*} - \bar{A}_{\sigma}A_{\kappa}^{*}]$$
$$I_{\kappa\sigma}^{\Re} = \Re[\bar{A}_{\kappa}A_{\sigma}^{*} - \bar{A}_{\sigma}A_{\kappa}^{*}]$$
$$I_{\kappa\sigma}^{\Im} = \Im[\bar{A}_{\kappa}A_{\sigma}^{*} + \bar{A}_{\sigma}A_{\kappa}^{*}]$$
$$e^{+2i\phi_{2}} = \frac{\bar{A}_{+} + \bar{A}_{-} + 2\bar{A}_{0}}{A_{+} + A_{-} + 2A_{0}}$$

$$\begin{aligned} \mathcal{A}_{CP} &= \frac{U_{+}^{+} - U_{-}^{+}}{U_{+}^{+} + U_{-}^{+}} \\ \mathcal{C}_{CP} &= \frac{1}{2} \left(\frac{U_{+}^{-}}{U_{+}^{+}} + \frac{U_{-}^{-}}{U_{-}^{+}} \right), \quad \mathcal{S}_{CP} &= \frac{I_{+}}{U_{+}^{+}} + \frac{I_{-}}{U_{-}^{+}} \\ \Delta \mathcal{C} &= \frac{1}{2} \left(\frac{U_{+}^{-}}{U_{+}^{+}} - \frac{U_{-}^{-}}{U_{-}^{+}} \right), \quad \Delta \mathcal{S} &= \frac{I_{+}}{U_{+}^{+}} - \frac{I_{-}}{U_{-}^{+}} \\ \text{For } B^{0} \to \rho^{0} \pi^{0} \\ \mathcal{A}_{CP} &= -\frac{U_{0}^{-}}{U_{0}^{+}}, \quad \mathcal{S}_{CP} &= \frac{2I_{0}}{U_{0}^{+}} \end{aligned}$$

4-fold ambiguity for ϕ_2^{eff}

$$\phi_2^{\text{eff}} = \frac{1}{4} \left[\arcsin\left(\frac{\mathcal{S}_{CP} + \Delta \mathcal{S}}{\sqrt{1 - (\mathcal{C}_{CP} + \Delta \mathcal{C})^2}}\right) + \arcsin\left(\frac{\mathcal{S}_{CP} - \Delta \mathcal{S}}{\sqrt{1 - (\mathcal{C}_{CP} - \Delta \mathcal{C})^2}}\right) \right]$$

Can measure $|\Delta \phi_2|$ using SU(3) symmetry involving $B^0 \to a_1 K$, $B \to K_{1A} \pi$ decays

M. Gronau and J. Zupan, PRD 73 057502 (2006)

```
BaBar, 454 million B\bar{B} pairs
```

Amplitude analysis of WA3 data taken by ACCMOR collaboration

Needed to determine $K\pi\pi$ model

First measurement!

$$\mathcal{B}(B^0 \to K_1(1270)^+ \pi^- + K_1(1400)^+ \pi^-) = 3.1^{+0.8}_{-0.7} \times 10^{-5} (7.5\sigma)$$

$$\mathcal{B}(B^+ \to K_1(1270)^0 \pi^+ + K_1(1400)^0 \pi^+) = 2.9^{+2.9}_{-1.7} \times 10^{-5} (3.2\sigma)$$

Relative contributions also determined

PRD 81 052009 (2010)

Solve system of inequalities,

Calculate bound on $|\Delta \phi_2| \equiv |\phi_2^{\text{eff}} - \phi_2|$ from $|\phi_2^{\text{eff}} - \phi_2| \leq (|\phi_{2, \text{ eff}}^+ - \phi_2| + |\phi_{2, \text{ eff}}^- - \phi_2|)/2$ $|\Delta \phi_2| < 11^{\circ}(13^{\circ})$ at 68% (90%) CL

Solution nearest SM expectation, $\phi_2^{\rm eff} = (79 \pm 7 \pm 11)^\circ$

$B \to \pi^+ \pi^-$

New results

- S \rightarrow SS, simultanious fit including $B^0 \rightarrow \pi^+\pi^-, K^\pm\pi^\mp, K^+K^-$
- 6D fitter: ΔE , $M_{\rm bc}$, $L^+_{K/\pi}$, $L^-_{K/\pi}$, $\mathcal{F}_{s/b}$ and Δt

 $L_{K/\pi}^{\pm}$: likelihood to be a K for a π mass hypothesis for pos./neg. charged tracks $\mathcal{F}_{s/b}$: event shape dependent variable

U $\rightarrow \pi^+\pi^-$

Downward fluktuation within the last 240 million $B\bar{B}$ pairs

Belle result for the last 236.995e+06 BBbar pairs.

 $\mathcal{A}_{CP}(B^0 \to \pi^+ \pi^-) = 0.06 \pm 0.10$ $\mathcal{S}_{CP}(B^0 \to \pi^+ \pi^-) = -0.62 \pm 0.13$

BABARPolarization: Helicity Basis

2 different polarizations, longitudinal(LP, CP even) and transversal(TP, CP even & odd)

 f_L : fraction of L pol,through helicity analysis (SM: $f_L \sim 1$)

37

$B \rightarrow \pi^+ \pi^-$

PRELIMINARY New results on full data set

 \bullet simultanious fit of branching ratios and CP asymmetries

 $N_{B^0 \to \pi^+ \pi^-} = 2886 \pm 82 \text{ (stat)}$

• previous Belle result: $(450 \times 10^6 B\bar{B} \text{ pairs})$ $S_{CP,prev.}^{\pi^+\pi^-} = -0.61 \pm 0.10 \pm 0.04$ $\mathcal{A}_{CP,prev.}^{\pi^+\pi^-} = +0.55 \pm 0.08 \pm 0.05$

new analysis is consistent on same dataset

'downward fluctuation' with last 200×10^6 $B\bar{B}$ pairs

Normalised Residuals BELLE

Pit Vanhoefer(MPI)

0

0.05

 ΔE [GeV]

0.1

Normalised Residuals

-0.1

-0.05

1

 $m_1(\pi^+\pi^-)$ [GeV/c²]

0.8

0.6

Normalised Residuals

-1

FPCP 2013

0

-0.5

 $0.5 \cos(\Theta_{\rm H})_{1}$

 ρ^0

visually seperate $B^0 \to \rho^0 \rho^0$ from $B^0 \to f_0 \rho^0$ with projections into

• $ho^0
ho^0$, $f_0
ho^0$, 4π fs, $Bar{B}$ bkg

Interference is treated as a systematic uncertainty, dominant source for $B^0 \to \rho^0 \rho^0$.

PRELIMINARY

New results

 ϕ_2 scan from isospin analysis in the $\pi\pi$ and the ho
ho(LP) system

- $B \to \pi \pi$, using Belle results only
- exclude: $23.8^\circ < \phi_2 < 66.8^\circ$ (at 1σ)
- exclude: $|\Delta \phi_2| > 44.25^{\circ}$

• $B \to \rho \rho$, using the LP fraction of $\mathcal{B}(B^0 \to \rho^0 \rho^0)|_{LP} = (0.21 \pm 0.36) \times 10^{-6}$ from this measurement,

world averages otherwise