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Summary

Generalities

The role and status of lattice QCD in flavour physics

Uncertainities in lattice calculations

Averages and FLAG

Recent results:

Decay constants of light/heavy mesons

Charmed decays

Neutral meson mixing

(Quark masses)

The future:

Lattice results coming soon
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On lattice QCD

Some (approximate) quotes from FPCP2013

“...I wouldn’t trust the lattice result.”

“Can we believe the error?”

“...very small errors.”

“...lattice is not always right.”

“I have no idea what they are doing.”

Lattice QCD allows first principles determination of hadron masses, matrix
elements, quark masses

Inputs are: a few hadron masses (for mu/d ,ms ,mc ,mb )
+ one parameter to set overall scale

Systematic errors can be estimated and improved

Lots of phenomenological checks
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Lattice QCD in one slide
1 Take QCD, discretise it on a lattice

2 Buy one of these:

BlueGene/Q, safe.epcc.ed.ac.uk

3 Write and optimise code

4 Monte Carlo simulate the QCD path integral to get gluons and sea quarks
5 Construct hadronic quantities
6 Analyse the data to extract masses, matrix elements etc
7 (Pay your electricity bill)

∃ ∞ number of ways to discretise QCD - all bad
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Progress in computing

1980s

2013

videogamecritic.com, pcgamer.com, flickr.com, technobuffalo.com
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Progress in lattice QCD

1980s

∼ 104 lattice

Quenched - no sea quarks

∼ 20 gauge configurations

Large unquantified systematics

Limited quantities calculated

Plots: Loft and DeGrand, 1989; Kronfeld, 2012

2013
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© 2012 Andreas Kronfeld/Fermi Natl Accelerator Lab.

964 lattices, volumes ∼ 5 fm

Multiple scales 0.15 − 0.045 fm

1000s of gluon configurations

Improved actions and algorithms

Physical quark masses!
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What lattice can do for flavour physics

A typical hadronic decay

QCD corrections can be significant

Vacuum saturation not good enough for precision calculations

In general, using an OPE

Experiment = (CKM elements) × (Perturbative) × (Nonperturbative)

Hadronic piece is often the dominant uncertainty
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What do we use it for?

Hadronic corrections to rare B decays

Important input for precise CKM matrix determination via the decays:

|Vud | |Vus | |Vub |

π+ → l+νl K+ → l+νl B0 → π−l+νl

K0 → π−l+νl

|Vcd | |Vcs | |Vcb |

D+ → l+νl D+
s → l+νl B0 → D−l+νl

D0 → π−l+νl D0 → K−l+νl

|Vtd | |Vts | |Vtb |

B0
d → B̄0

d B0
s → B̄0

s


plus phase via K decays
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CKM matrix determination
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Vital in indirect search for new physics

CKM unitarity triangle
Lattice calculations enter into:

∆Md ,∆Ms

εK

|Vub |

Improvement since 1995
(not just lattice!):
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What are the uncertainties in a lattice calculation

Robust calculation should address:

Statistics: Error from Monte-Carlo average

Scaling violations: RG equations only satisfied approximately
a d

da G(a) = O(an, αm
s ap)

Must use multiple lattice spacings to fit this away.

Chiral extrapolation: If Mπ is too heavy, results must be extrapolated

Renormalisation: Very few conserved currents on the lattice =⇒ JQCD = ZJJlatt

Others: Excited state contamination
Finite volume effects
Scale setting
Quark mass tuning
Higher orders in EFT

Dominant source of error depends on the quantity and the action.

Some lattice papers are exploratory and won’t address all of these
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The trouble with chiral extrapolations

Cost for generating configurations grows with lighter quark masses
Error from chiral extrapolation large for mesons with valence light quark
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3
 data (ChPT)
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Some ambiguity in what chiral fit form to use:
SU(2) vs SU(3)
NLO, NNLO terms, analytic, priors?

Now we can simulate at the physical point!
RBC/UKQCD 1011.0892
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Averages
Several mature calculations for some quantities

Which lattice result should be used?
How should they be averaged (correlations)?
Can we trust a lone result?
Should we just use the one with the biggest error?:
No! It might just be a rubbish/old calculation

Flavour Lattice Averaging Group (PDG for lattice results)
FLAG quality criterion ?, •, � :

Chiral extrapolation
Continuum extrapolation
Finite volume effects
Renormalisation

Published results with no red tags are averaged
Not gospel, but generally a reasonable guide to a good calculation
Nf = 2 and Nf = 2 + 1 calculations averaged separately
See: itpwiki.unibe.ch/flag/
FLAG-2 update due before July 2013
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Summary of recent results



Results

Focus on full calculations completed in the last few years
Preliminary results will be obviously marked - don’t quote them!
Results available from most big lattice collaborations:
ALPHA, BMW, ETMC, Fermilab/MILC, HPQCD, PACS-CS, RBC/UKQCD, ...
Don’t have space for everything, in particular

Spectroscopy: see S.Ryan FPCP2012
Heavy to light semileptonics: B → D(∗)lν, B → Kl+l−, B → πlν for |Vub |, |Vcs |, |Vcd |:
see A. El-Khadra FPCP2012

A bit more detail on some calculations (HPQCD)

In brief:
Several results with physical pion masses
=⇒ significant reduction in error for key quantities
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Decay constants and form factors of
light mesons



fπ, fK and |Vus |

Decay constant:

〈0|Aµ(0)|P〉 = ifPpµ

easily obtained from lattice
psuedoscalar correlators

K+
W +

l+

νl

u

s

Appears in decays π+ → l+νl , K+ → l+νl

Standard model rate

Γ(K → lν) =
G2

F |Vus |
2

8π
f2
K m2

l MK

1 − m2
l

M2
K

 (1 + E.M.)

Cannot compete with |Vud | from β decay. fπ is used for scale setting.

Exp values for ratio Γ(K+ → l+νl)/Γ(π+ → l+νl) and masses gives |Vus |fK+

|Vud |fπ+

Determining fK+/fπ+ on the lattice gives |Vus |

|Vud |
precisely

Error previously dominated by chiral extrapolation
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fπ, fK and |Vus |

1.14 1.16 1.18 1.20 1.22 1.24 1.26 1.28 1.30
fK/ fπ

FLAG 2011 N f > 2 Average

HPQCD 13

MILC 13

ETM 10

RBC/UKQCD 12

LAIHO 10

MILC 10

RBC/UKQCD 10

BMW 10

JLQCD/TWQCD 10

MILC 09

AUBIN 08

PACS-CS 08

RBC/UKQCD 08

HPQCD 07

NPLQCD 06

ETM 10

ETM 09

QCDSF/UKQCD

N f = 2 + 1 + 1

N f = 2 + 1

N f = 2

New determinations

RBC/UKQCD: Near physical Mπ

fK+/fπ+ = 1.199(12)stat(14)sys

MILC: Physical Mπ

fK+/fπ+ = 1.1970(29)stat(57)sys

HPQCD: Physical Mπ

fK+/fπ+ = 1.1916(21)

e.g. HPQCD result gives
|Vus | = 0.22564(28)Br(K+)(20)EM(40)latt (5)Vud

Test of first row unitarity of CKM
|Vud |

2 + |Vus |
2 + |Vub |

2 − 1 = 0.00009(51)
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f+(0) and |Vus |

|Vus | from Kaon semileptonic vector form factor

Determined from vector current matrix element

〈π(pπ)|Vµ|K(pK )〉 = f+(q2)

pµK + pµπ −
M2

K −M2
π

q2 qµ
 + f0(q2)

M2
K −M2

π

q2 qµ

Expmt: |Vus |f+(0) = 0.2163(5)

Much more difficult than fπ, fK

K0

u

l+

νl

s

d

π−

W+
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f+(0) results
Status pre 2011: Room for improvement

0.95

0.95
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0.96

0.97

0.97

0.98

0.98

0.99

0.99

1.00

1.00

f+(0)

LR 84
Bijnens 03
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Cirigliano 05
Kastner 08
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ETM 09A
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RBC 06
JLQCD 05

our estimate for Nf = 2

N
f=

2
N

f=
2+

1 RBC/UKQCD 10

our estimate for Nf = 2+1

ETM 10D

New results:

MILC:
f+(0) = 0.9667(23)(33)

Preliminary results at or near phys point
from MILC and RBC/UKQCD→
E.Gamiz et al. arXiv:1211.0751, P.Boyle et al. arXiv:1212.3188

0 0.5 1 1.5

(r
1
mπ)

2

0.97

0.98

0.99

1

1.01

f 0 (
q2 =

0)

continuum NLO
continuum NNLO (fit, asqtad data only)
a = 0.12 fm (N

f
 = 2+1 asqtad configurations)

a = 0.09 fm (N
f
 = 2+1 asqtad configurations)

a = 0.12 fm (N
f
 = 2+1+1 HISQ configurations)

a = 0.15 fm (N
f
 = 2+1+1 HISQ configurations)

Extrapolated value from NNLO asqtad fit

Preliminary
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Decay constants of heavy mesons



fB , fBs

Bottom:

Decay constant for meson Bq, q = d, s

〈0|Aµ(0)|Bq〉 = fBq pµ

Need to use lattice EFT or extrapolate in mb

Bq

W +

l+

νl

q

b

Systematics cancel in the ratio fBs/fB - used for CKM determination

Error in SM rate for Br(B+ → τ+ν) comes from f2
B |Vub |

2

Appears in SM prediction for Br(Bq → µ+µ−)

BrSM(Bs → µ+µ−) = 3.17 ± 0.15 ± 0.09 × 10−9

BrLHCb(Bs → µ+µ−) = 3.2+1.5
−1.2 × 10−9

evidence found by LHCb 2012 See rare B-decay talks...
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fB , fBs results

140 160 180 200 220 240 260 280
fB, fBs (MeV)

fB fBs

NRQCD/HISQ

NRQCD/HISQ

Fermilab

HISQ

HQET - Preliminary

Twisted mass

Narison: QCD sum rules

Hwang: LFQM

Badalian: Field correlator

Choi: LFQM

Ebert: Rel. quark model

Cvetic: Salpeter eq.

Bordes: FE sum rules

Wang: Schw-Dyson

Jamin: QCD sum rules

N f > 2 Av:

N f = 2 + 1 + 1

N f = 2 + 1

N f = 2

continuum

Several consistent results with very
different methods

Competitive with most precise
continuum methods

1.00 1.05 1.10 1.15 1.20 1.25 1.30 1.35
fBs/ fB

N f > 2 Average

HPQCD: NRQCD/HISQ

HPQCD: NRQCD/HISQ

FNAL/MILC: Fermilab

ETM: Twisted mass

Narison: QCD sum rules

Hwang: LFQM

Choi: LFQM

Badalian: Field correlator

Ebert: Rel. quark model

Bordes: FE sum rules

Cvetic: Salpeter eq.

Wang: Schw-Dyson

Jamin: QCD sum rules

N f = 2 + 1 + 1

N f = 2 + 1

N f = 2

continuum

Recent results

HPQCD: Physical Mπ

NRQCD/HISQ Nf = 2 + 1 + 1

HPQCD: NRQCD/HISQ Nf = 2 + 1

FNAL/MILC: Fermilab method

ALPHA: HQET

ETM: extrapolation

Rachel Dowdall (Cambidge) Review of lattice flavour physics 22 / 51



HPQCD fB , fBs at the physical point PRL XXX(2013) XXXXXXX

Described as “optimistic” error by a previous speaker
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Set 4
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First results for fB , fBs with physical Mπ

NRQCD with radiative/relativistic corrections
∼ 198k correlators for each data point
Allowed error 10× 1-loop renormalisation
Two consistent analyses (chiral and phys pt only), took larger error
0.6% error in ratio, no longer comes from chiral extrapolation

arXiv:1302.2644
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D-meson semileptonic decays



|Vcs | from the shape of the D → Klν form factor

SM rate given as function of momentum transfer q2

dΓ(D → Klν)

dq2 =
G2

F |Vcs |
2

24π3 p3|f+(q2)|2

|Vcs | previously determined from form factor f+(0)
First study by HPQCD using all experimental bins
Access all q2 values with twisted boundary conditions
Most precise |Vcs |, 1.5% error

4

TABLE II. Results for form factors for D → K decay at 3 or 4 q2 values per set corresponding to different K momenta.

Set q2a2 f+(q
2) f0(q

2) q2a2 f+(q
2) f0(q

2) q2a2 f+(q
2) f0(q

2) q2a2 f0(q
2)

1 0.0 0.755(13) 0.753(14) 0.43 1.090(8) 0.896(5) 0.69 1.027(2)
2 0.0 0.751(8) 0.751(9) 0.34 0.994(5) 0.862(3) 0.53 1.218(14) 0.932(3) 0.68 1.0186(15)
3 0.0 0.747(9) 0.746(9) 0.16 0.974(5) 0.847(5) 0.26 1.200(14) 0.948(6) 0.34 1.011(2)
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FIG. 4. Ratio of experimental to lattice results in each q2 bin
forD0 → K−ℓν̄, using CLEO [4] and BaBar [1] data. The last
3 bins are total rates for BaBar [1], Belle [2] and BESIII [3].
Error bars from experiment and from lattice QCD are marked
separately on each point. The horizontal lines give our fitted
result for V 2

cs with its error.

and BaBar) and can then make a bin-by-bin compari-
son, including the correlations between bins for lattice
QCD and experiment. This comparison is shown in
Fig. 4 in which we plot the ratio of experiment to lat-
tice QCD for each bin, which is |Vcs|2 for that bin. We
also show the result of fitting a weighted average over the
bins to obtain a final value for |Vcs|. We use CLEO [4]
and BaBar [1] binned data and Belle [2] and BESIII
(preliminary, [3]) total rates for D0 → K− to obtain
|Vcs| = 0.966(5)expt(14)lattice. Using different combina-
tions of experimental results gives consistent values; the
experimental error is reduced by including all of them.
For the binned data the experimental results are most
accurate at low q2, the lattice QCD results, at high q2.
The optimal bins for the combination are Bins 1 to 6, see
Fig. 4.

We can also compare the shape more accurately to ex-
periment using a common z-space expansion. We take
t0 = t+(1 − (1 − t−/t+0)1/2) and a specific form for
P (q2)Φ(q2) given in [4, 16]. Fig. 5 compares our results
for b1/b0 and b2/b0 to experiment for this case. Agree-
ment is excellent.

Finally, we note that Fig. 3 shows both the D → K
and Ds → ηs form factors as a function of q2. The ηs
is a pseudoscalar made of s valence quarks that is not
allowed to decay on the lattice. The two form factors
then differ in their spectator quark only: D → K has
an ℓ spectator and Ds → ηs an s. There is no difference
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FIG. 5. 68% confidence limits on the shape parameter ratios
b1/b0 and b2/b0 from a 3-parameter z-space fit to f+ (Eq. 8
using PΦ and t0 from [4]), comparing lattice QCD and exper-
iment [1, 3, 4]. Neither BaBar nor BESIII quote a correlation
matrix from their fit. BaBar results shown are from our fit to
the binned correlated experimental data and BESIII results
are plotted as a rectangle.

between the form factors at the 2% level. This was also
found for B decays in [17] and is likely to be a generic
feature of heavy quark decays. This was not anticipated
by earlier calculations [18, 19] in which spectator quark
mass effects are linked to differences in the heavy meson
decay constants (here fDs and fD differ by 20%).

Fig. 3 also demonstrates how small discretisation errors
are with results from coarse and fine lattices lying on top
of each other. A further check of this is a comparison of
the Ds → ηs form factors from 1-link spatial and local
temporal vector currents which also show no difference.

Conclusions. Vcs value, compare to others.
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|Vcs | from the shape of the D → Klν form factor

Model independent parameterisation of f+(q2) in z-space

z =

√
t+ − q2 −

√
t+ − t0√

t+ − q2 −
√

t+ − t0
, t± = (mD ±mK )2, f(q2) =

1
P(q2)Φ(q2)

N∑
n=0

bnzn

Compare the shape to experiment using 68% C.L. of ratios b2/b0, b1/b0
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J.Koponen et al. arXiv:1305.1462
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B-mixing



B meson mixing

Measure nonperturbative QCD corrections to
mass difference ∆Mq,∆Γq

Quoted as bag-parameter B̂q in OPE
〈Bq |O|Bq〉 = 8

3 f2
Bq

m2
Bq

B̂q(µ)

measures deviation from vacuum saturation

Gives CKM matrix elements via

∆Md

∆Ms
=

MBd

MBs

B̂d

B̂s

f2
Bd

f2
Bs

∣∣∣∣∣Vtd

Vts

∣∣∣∣∣2

Bd

W + d

b

b

d

Bd

W −

Bd W +

d

b

b

d

BdW −
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B meson mixing results

Most accurate results are for SU(3) breaking parameter ξ =
fBs

√
B̂s

fBd

√
B̂d

1.0 1.1 1.2 1.3 1.4
ξ

N f > 2 Average

ETM: Twisted mass

FNAL/MILC: Fermilab

RBC: Static/Domain wall

HPQCD: NRQCD/HISQ

New results:

Fermilab/MILC
ξ = 1.268(63)

ETM: PRELIMINARY
ξ = 1.21(6)

Current unquenched average: ξ =1.237(32)
Error on ξ dominated by stats & chiral extrapolations - room for improvement
=⇒ tighter constraint on ∆Ms/∆Md curve in unitarity triangle

Expect new HPQCD results for B̂s , B̂d at phys pt. soon
- RBC/UKQCD, ETM, FNAL/MILC underway
BSM operators also being calculated

H∆B=2 =
5∑

i=1

CiOi +
3∑

i=1

CBSM
i OBSM

i
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Bottom hadron decays



Fragmentation fraction for Bs → µ+µ−

Branching fraction normalised via

Br(Bs → µ+µ−) = Br(Bq → X)
fq
fs

εX Nµµ

εµµNX

Measure fq/fs using B → D semileptonics Fleischer et al. 1004.3982

fs
fd
∝

1
NF

, NF =

 f (s)
0 (M2

π)

f (d)
0 (M2

K )


2

LHCb use sum rule NF = 1.24(8)

Measure using lattice B(s) → D(s)lν form factor ratio

〈D(p′)|Vµ|B(p)〉 = f+(q2)

(p + p′)µ −
M2

B −M2
D

q2 qµ
 + f0(q2)

M2
B −M2

D

q2 qµ
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Fragmentation fraction for Bs → µ+µ−

1st calculation by FNAL/MILC arxiv:1202.6346

2 lattice spacings, ∼ 250 MeV pion mass

f (s)
0

f (d)
0

= 1.046(44)stat(15)sys, =⇒ NF = 1.09(10)

2σ from sum rules - NF = 1.24(8)

4.5% error from stats/chiral extrapolation

Potential to reduce by ∼ 1/2

Limited by experimental statistics

fs
fd

= 0.283(27)stat(19)sys(24)theo
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Λb → Λµ+µ−

First lattice calculation Detmold et al. 1212.4827

Static limit, 10 form factors

Calculate at high q2, extrapolate with mono/di-pole formula

Preliminary LHCb results in agreement M.O. Bettler talk
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Kaon mixing



CP violation, εK and BK

Indirect CP violation

εK =
A(KL → ππI=0)

A(Ks → ππI=0)

Only unitarity constraint testing
light-CP violation - hyperpola in η̄, ρ̄

In SM:

εK =
G2

F f2
K m2

K m2
W

12
√

2π2∆mK

B̂K
{
CKM + pert.

}
γ

γ

α
α

dm∆
Kε

Kε

sm∆ & dm∆

ubV

βsin 2

(excl. at CL > 0.95)
 < 0βsol. w/ cos 2

excluded at C
L > 0.95

α

βγ

ρ
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

η

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5
excluded area has CL > 0.95

Summer 12

CKM
f i t t e r

0.60 0.65 0.70 0.75 0.80
B̂K

FLAG 2011 N f > 2 Average

RBC/UKQCD 12

LAIHO 11

SWME 11

BMW 11

RBC 10

SWME 10

AUBIN 09

RBC/UKQCD 10

ETMC 10

JLQCD 08

RBC 04

N f = 2 + 1

N f = 2

B̂K no longer dominant uncertainty
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BMW collaboration BK at the physical point

First result for B̂K at Physical Mπ

Clover action

4 lattice spacings

Chiral and scale dependence under
good control

Error dominated by statistics
 0.46

 0.48

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16

B K
R

I (3
.5

 G
eV

)

M 2[GeV2]

a 0.093 fm
a 0.077 fm
a 0.065 fm
a 0.054 fm

cont-limit

Durr et al. arXiv:1106.3230
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Long distance contributions to εK ,∆MK

Long distance contribution to ∆MK = MKL −MKS ∼ 20 − 30%

Long dist contribution to εK ∼ 5%,

Theoretical progress: proposal to calculate non-local contributions like∫
d4x

∫
d4y〈K̄0|T {HW (x)HW (y)}|K0〉

d

d

s

s

u

u

HW HW

t2 t1
K

0
(tf) K

0
(ti)

tb ta

Difficult!
Many diagrams to calculate
Finite volume method
GIM mechanism to control divergences

Exploratory calculation by RBC/UKQCD gives reasonable result

N.Christ arXiv:1201.2065, N.Christ et al. arXiv:1212.5931
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Radiative and leptonic decays in
quarkonium



Radiative and leptonic decays in quarkonium

Rosner, arXiv:1107.2023 PDG

Large number of known decays available - tests of (lattice) QCD
e.g. form factor

Γ(J/ψ→ ηcγ) = 64
27

αem |q|3

(MJ/ψ−M2
ηc )2 |V(0)|2

Leptonic width - via decay constant:
Γ(J/ψ→ e+e−) = 4π

3 α
2
sQ2

c
fJ/ψ2

MJ/ψ
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Radiative and leptonic decays in charmonium - results

First study by Dudek et. al. (2009), with only one lattice spacing

Full results from HPQCD and ETM

5.2 5.4 5.6 5.8 6.0 6.2
Γ(J/ψ → e+e−) (keV)

Average

Experiment

HISQ

Twisted mass

1.0 1.5 2.0 2.5 3.0
Γ(J/ψ → ηcγ) (keV)

Average

Experiment

HISQ

Twisted mass

Excited state decays are harder on the lattice

HPQCD study of similar decays of bottomonium with NRQCD in progress
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Quark masses



Quark masses

Key standard model parameter but cannot be directly measured

Lattice: simply tune quark mass till meson mass is correct e.g.: Mπ,MK ,Mηc ,MΥ

Must renormalise to a continuum scheme, e.g. MS at scale µ

mMS(µ) = Zmmlatt(a)

Dominant error usually from Zm

Naively, one would calculate Zm in latt perturbation theory - difficult

Various schemes exist to match to high order (α3
s) continuum pert. theory

Alternatively: calculate ratios like ms/mc . Zm cancels if same action used
=⇒ accurate to ∼ 1%
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b quark: mb(mb)

Quoted in MS scheme at µ = mb

4.0 4.1 4.2 4.3 4.4 4.5
mb(mb) (GeV)

PDG 2012

HPQCD: NRQCD

HPQCD: HISQ

ETMC: twisted mass

ALPHA: HQET

BODENSTEIN

CHETYRKIN

NARISON

LASCHKA

BOUGHEZAL

BUCHMULLER

PINEDA

BAUER

HOANG

BORDES

CORCELLA

EIDEMULLER

ERLER

BRAMBILLA

PENIN

latt u,d,s sea

latt u,d sea

continuum

Several recent lattice determinations

HPQCD: EFT energy shift from 2-loop
NRQCD latt PT

mb (mb ) = 4.166(43) GeV

HPQCD: Matching moments of lattice
correlators to α3

s continuum PT
mb (mb ) = GeV

ETM: Extrapoln matched to static limit
mb (mb ) = 4.29(14) GeV

ALPHA: PRELIMINARY
Nonperturbative NLO HQET

mb (mb ) = 4.22(10)(4) GeV

Comparison plot: Most accurate determinations are high order continuum PT
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Summary

Lattice QCD is a key input in rare decays and CKM fits
Results at physical pion masses

Reduced error from chiral extrapolation
More robust results

Consistent lattice results with very different methods

Approaching/beating other errors in some quantities

What to expect from lattice QCD in the future

Results at physical pion masses from all collaborations

Electromagnetic and isospin effects included

Long distance mixing effects

B-physics:
B → K (∗)ll, B → πlν, B → D(∗)lν, R(D)
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THE END
Thanks for listening



Further reading

Some recent reviews:
A.Kronfeld, Twenty-first Century Lattice Gauge Theory: Results from the QCD
Lagrangian, Ann.Rev.Nucl.Part.Sci. 62 (2012) 265-284
Z.Fodor, C Hoelbling, Light Hadron Masses from Lattice QCD, Rev.Mod.Phys. 84
(2012) 449

Up to date plenary talks at lattice 2012:
http://www.physics.adelaide.edu.au/cssm/lattice2012/program.php

Other lattice conferences: Google “Lattice 20XX”
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Spectroscopy

Good agreement for B and Υ spectrum
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Light quark masses

Few recent results, but no update at recent FPCP conferences

Status in 2011 FLAG review
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our estimate for Nf = 2+1
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RBC/UKQCD 10A

ETM 10B

MILC 10A
PACS-CS 10
HPQCD 10

Lattice calculations done in
isospin limit mud = (mu + md)/2

MS scheme at µ = 2 GeV

Isospin breaking and EM effects
estimated afterwards

BMW have results at physical
point - no chiral extrapolation

FLAG average mud = 3.43(11)
MeV
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fD , fDs

fD , fDs used to get |Vcd |, |Vcs | via D → µν, Ds → µν Ds → τν

or assume unitarity and compare fDq direct to experiment

Previous discrepancy no longer significant
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Physical point calculations
underway
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Recent results

ETM: twisted mass
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B → πlν

Old results from FNAL/MILC(2011) and HPQCD(2006)
FNAL: |Vub | = 3.38(36) × 10−3

HPQCD: |Vub | = 3.55(25)(50) × 10−3

Updates due soon, plus results from ALPHA

Preliminary results from e.g. C. Bouchard:
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R(D)

FNAL/MILC arxiv:1206.4992

R(D) =
Br(B→Dτν)
Br(B→Dlν) = 0.316(12)(7)

More statistics and R(D∗) coming soon...
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