

Measurements of CP violation in B^o oscillations @ LHCb

B. Souza de Paula on behalf of LHCb Collaboration FPCP 2013- 21/5/2013 - Búzios-RJ

B. Souza de Paula - FPCP 2013 - 21/5/2013

LHCb experiment

- Complementary to B Factories (look for B_s sector)
- Complementary to ATLAS and CMS
 - Dedicated to flavour physics in B (and D) sector(s)
 - LHCb searches for <u>indirect</u> effect of New Physics through loop diagrams sensitive to higher mass scales

• Forward spectrometer as $b\overline{b}$ are boosted along beam axis $2 < \eta < 5$

LHCb experiment

Results to be presented

- Oscillation frequency Δm_s from $B_s^0 \rightarrow D_s^- \pi^+$
- Mixing CP asymmetry a_{sl}^s
- Indirect CP violation phase $\boldsymbol{\varphi}_s$
 - From $B_s^0 \rightarrow J / \psi K^+ K^-$
 - From $B_s^0 \rightarrow J / \psi \pi^+ \pi^-$
 - From $B_s^0 \rightarrow \phi \phi$
- All results presented with 1.0fb⁻¹ recorded in 2011

B_s^o oscillations

- B_s oscillates much faster than $B^0 \rightarrow$ need precise measurement of Δm_s for CPV measurements
- Better channel is $B_s^0 \rightarrow D_s^- \pi^+$
- Using 5 different D_s modes

 (adds up to ~34 k events
 in 1.0 fb⁻¹)

$$D_{s}^{-} \rightarrow \phi(K^{+}K^{-})\pi^{-}$$
$$D_{s}^{-} \rightarrow K^{*0}(K^{+}\pi^{-})K^{-}$$
$$D_{s}^{-} \rightarrow K^{+}K^{-}\pi^{-}$$
$$D_{s}^{-} \rightarrow K^{-}\pi^{+}\pi^{-}$$
$$D_{s}^{-} \rightarrow \pi^{-}\pi^{+}\pi^{-}$$

$\Delta m_{\rm s}$ measurement

World's most precise measurement

• With a flavour specific decay we can measure the time integrated CP asymmetry in $B_s^0 - \overline{B}_s^0$ mixing

$$a_{sl}^{s} = \frac{\Gamma\left(B_{s}^{0} \to D_{s}^{-}\mu^{+}\right) - \Gamma\left(\bar{B}_{s}^{0} \to D_{s}^{+}\mu^{-}\right)}{\Gamma\left(B_{s}^{0} \to D_{s}^{-}\mu^{+}\right) + \Gamma\left(\bar{B}_{s}^{0} \to D_{s}^{+}\mu^{-}\right)} \approx 1 - \left|\frac{q}{p}\right|^{2}$$

• The mass eigenstates are

$$egin{aligned} & \left|B_{sL}
ight
angle &= p\left|B_{s}^{0}
ight
angle + q\left|ar{B}_{s}^{0}
ight
angle \ & \left|B_{sH}
ight
angle &= p\left|B_{s}^{0}
ight
angle - q\left|ar{B}_{s}^{0}
ight
angle \end{aligned}$$

Standard Model prediction

$$a_{sl}^{s} = (1.9 \pm 0.3) \times 10^{-5}$$

A.Lenz arXiv1205:1444

CP in mixing

- Signal yields extracted from mass fit to 1.0fb⁻¹ of data
- PDF takes into account D⁺ and combinatorial backgrounds

About 40k signal events for each charge

B. Souza de Paula - FPCP 2013 - 21/5/2013

LHCb-CONF-2012-022, Preliminary

CP in mixing

- Main systematics due to efficiency ratio extraction $\left[\frac{\epsilon(D_s^-\mu^+)}{\epsilon(D_s^+\mu^-)}\right]$ taken from calibration samples
 - Will go down with more statistics)
- LHCb obtains

$$a_{sl}^s = (-0.24 \pm 0.54 \pm 0.33)\%$$

• Most precise measurement of the asymmetry

CP in mixing

- Main systematics due to efficiency ratio extraction taken from calibration samples
 - Will go down with more statistics)
- LHCb obtains

$$a_{sl}^s = (-0.24 \pm 0.54 \pm 0.33)\%$$

 Most precise measurement of the asymmetry

Indirect CP

• When both B_s^0 and \overline{B}_s^0 decay in the same final state we can have CP asymmetry in the interference between decay and mixing

 $\phi_f = \phi_M - 2 \phi_D$

- A time dependent analysis is sensitive to Φ_f
- Need to measure oscillation and the flavour of the B_s^0 at t=0

Tagging system

- Flavour Tagging is the procedure to determine the flavour of the reconstructed B meson at production
- Looks for the underlying event to get an answer

Neural net to combine the different taggers

13

Tagging system

• Calibrate tagging using flavour specific decays as $B^+ \rightarrow J/\psi K^+$ for opposite side and $B_s^0 \rightarrow D_s^- \pi^+$ for same side tagger

$$B_s \rightarrow D_s^- \pi^+$$

• Combined tagging power $\varepsilon_{eff} = (3.13 \pm 0.23)\%$ for $B_s^0 \rightarrow J / \psi K^+ K^-$

Use of SST new wrt previous analysis ($\varepsilon_{\rm eff}$ (OST)=2.29%)

B. Souza de Paula - FPCP 2013 – 21/5/2013

CKM fitter,

arXiv:1106.4041

- Golden mode for Φ_s (Analogue in B_s^0 sector to $B^0 \rightarrow J/\psi K_S$)
- Small & well predicted in SM $\phi_s^{c\bar{c}s} = -2\beta_s = -2\arg\left(-\frac{V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*}\right) = (-0.036 \pm 0.002)$
- New Physics could add large terms to $oldsymbol{arPhi}_{s}$
- Dominated by $\phi \rightarrow K^+K^-$
- We perform a MLL simultaneous fit to both mass and propertime
 4000 LHCb

 $B_{s}^{o} \rightarrow J/\psi K^{+}K^{-}$

Analysis with 1.0 fb⁻¹ yields about 28k signal events

 $\overline{\mathbf{B}}^{0}_{\mathbf{s}}$

- VV final state: is not a CP eigenstate and needs to separate CP odd and even components with angular analysis (s-wave ~ 1%)
 - Well described using helicity basis (same as $B_s^0 \rightarrow \phi \phi$)
 - Observables of the fit: mass,
 proper-time, angles, tagging decision
- Time resolution obtained from prompt J/ ψ (with effective width of σ_t =45fs)

- There is a vector-pseudo scalar final state with the same diagram as $B_s^0 \rightarrow J/\psi K^+ K^-$
- $B_s^0 \rightarrow J / \psi \pi^+ \pi^-$ (dominated by $f_0(980)$)
- No angular analysis needed
- CP-odd eigenstate (>97.7%)
- ~1/3 of $B_s \rightarrow J/\psi K^+ K^-$ yield
- First observed by LHCb in 2011

PRD 86(2012) 052006

- There is a vector-pseudo scalar final state with the same diagram as $B_s^0 \rightarrow J/\psi K^+ K^-$
- $B_s^0 \rightarrow J / \psi \pi^+ \pi^-$ (dominated by $f_0(980)$)
- No angular analysis needed
- CP-odd eigenstate (>97.7%)
- ~1/3 of $B_s \rightarrow J/\psi K^+ K^-$ yield
- First observed by LHCb in 2011

B. Souza de Paula - FPCP 2013 – 21/5/2013

2000 1600 1200 1200 400 0 5300 5400 5500 $m(J/\psi\pi^{+}\pi^{-})$ (MeV)

PLB 713(2012) 378

Φ_s fit results

• Results MLL fit for $B_s^0 \rightarrow J / \psi K^+ K^-$

 $egin{aligned} \phi_s &= 0.07 \ \pm 0.09 \ (ext{stat}) \pm 0.01 \ (ext{syst}) ext{ rad} \ \Gamma_s &= 0.663 \pm 0.005 \ (ext{stat}) \pm 0.006 \ (ext{syst}) ext{ ps}^{-1} \ \Delta\Gamma_s &= 0.100 \pm 0.016 \ (ext{stat}) \pm 0.003 \ (ext{syst}) ext{ ps}^{-1} \ |\lambda| &= 0.94 \ \pm 0.03 \ (ext{stat}) \pm 0.02 \ (ext{syst}) \end{aligned}$

 Main systematics due to acceptance of the angles

Φ_s fit results

• Results MLL fit for $B_s^0 \rightarrow J / \psi K^+ K^-$

 $egin{aligned} \phi_s &= 0.07 \ \pm 0.09 \ (ext{stat}) \pm 0.01 \ (ext{syst}) ext{ rad} \ \Gamma_s &= 0.663 \pm 0.005 \ (ext{stat}) \pm 0.006 \ (ext{syst}) ext{ ps}^{-1} \ \Delta\Gamma_s &= 0.100 \pm 0.016 \ (ext{stat}) \pm 0.003 \ (ext{syst}) ext{ ps}^{-1} \ |\lambda| &= 0.94 \ \pm 0.03 \ (ext{stat}) \pm 0.02 \ (ext{syst}) \end{aligned}$

 Main systematics due to acceptance of the angles

• Enough data to also measure Δm_s

 $\Delta m_s = (17.70 \pm 0.10 \pm 0.01) \text{ ps}^{-1}$

Good agreement with $B_s^0 \rightarrow D_s^- \pi^+$

Φ_s fit results

• Results for $B_s^0 \rightarrow J / \psi \pi^+ \pi^-$

$$\phi_s = -0.14^{+0.17}_{-0.16} \pm 0.01$$

• Combining the results from $B_s^0 \rightarrow J / \psi K^+ K^-$ and $B_s^0 \rightarrow J / \psi \pi^+ \pi^-$

$$egin{array}{rll} \phi_s &= 0.01 \ \pm \ 0.07 \ ({
m stat}) \ \pm \ 0.01 \ ({
m syst}) \ {
m rad}, \ \Gamma_s &= 0.661 \ \pm \ 0.004 \ ({
m stat}) \ \pm \ 0.006 \ ({
m syst}) \ {
m ps}^{-1}, \ \Delta\Gamma_s &= 0.106 \ \pm \ 0.011 \ ({
m stat}) \ \pm \ 0.007 \ ({
m syst}) \ {
m ps}^{-1}. \end{array}$$

+ambigous solution $(\Phi_s, \Delta \Gamma_s) \rightarrow (\Pi - \Phi_s, - \Delta \Gamma_s)$

Solution of ambiguity

 To solve ambiguity it is possible to measure the difference between S-wave and P-wave in bins of K⁺K⁻ mass

arXiv:1304.2600, submitted to PRD

Solution of ambiguity

 To solve ambiguity it is possible to measure the difference between S-wave and P-wave in bins of K⁺K⁻ mass

Only $\Delta \Gamma_s > 0$ fits the expected pattern

B. Souza de Paula · FPCP 2013 – 21/5/2013

B. Souza de Paula - FPCP 2013 - 21/5/2013

Without latest ATLAS result

23

- p-value of Standard Model hypothesis is 16%
- First measurement of CP violating phase in $B_s^0 \rightarrow \phi \phi$

Conclusion

- LHCb produced very interesting results of CP violation in B_s oscillations
 - Δm_s (mandatory ingredient) From $B_s \rightarrow D_s \pi^+$ $\Delta m_s = (17.728 \pm 0.023 \pm 0.006) \text{ps}^{-1}$

arXiv:1304.4741, NJP **15** 053021

Precise measument of mixing asymmetry a_{sl}^s

 $a_{sl}^s = (-0.24 \pm 0.54 \pm 0.33)\%$

LHCb-CONF-2012-022, Preliminary

Conclusion

• Most precise measurement of CP violation phase in $B_s^0 \rightarrow J / \psi K^+ K^-, \pi^+ \pi^-$:

PLB 713 (2012) + arXiv:1304.2600

ϕ_s	=	0.01	±	0.07	(stat)	±	0.01	(syst)	rad,
Γ_s	=	0.661	±	0.004	(stat)	±	0.006	(syst)	$\mathrm{ps}^{-1},$
$\Delta\Gamma_s$	=	0.106	\pm	0.011	(stat)	\pm	0.007	(syst)	ps^{-1} .

• First measurement of CP violation phase in $B_s^0 \rightarrow \phi \phi$:

 $\phi_s = [-2.46, -0.76]$

arXiv:1303.7125, submitted to PRL

Prospects

- All results presented are in agreement with Standard Model
- All results are still limited by statistics
 - Update those results with 2012 data (2 fb⁻¹)
 - 2015-2017: more data
 - LHCb Upgrade see R. Le Gac's talk on friday

Backup

B. Souza de Paula - FPCP 2013 - 21/5/2013

29

LHCb performance

- VELO silicon planes gets closer (8 mm) to beam in collision mode \rightarrow IP resolution of ~12 μ m and proper time of ~40fs
- 2 RICH detectors give better particle identification (p/K/π) separation 2-100GeV/c
- Tracking system gives a resolution of $\sigma p/p \sim 0.5\%$ (2-100GeV/c)
- In 2011: 1.0 fb⁻¹ recorded: $\sim 3.10^{11}$ bb pairs produced

CKM triangles

31

32

a_{sl} systematics

Source	δa _{sl} (%)		
Signal model in D _s mass fit	0.12		
Background from other b hadrons	0.10		
Kinematic difference between π and μ	0.12		
Kaon asymmetries	0.04		
Varying run conditions between field-up and field-down	0.02		
Muon corrections	0.10		
Muon related software trigger biases	0.10		
Statistical uncertainty on efficiency ratios	0.20		
Total	0.33		

Tagging calibration

• For each event an estimated probability of the tagging decision to be correct (η) is given by a neural net.

Calibration of η is needed to obtain an ω event per event

- Use per event mistag as observable $\omega = p_0 + p_1 \cdot (\eta \overline{\eta})$
- $B^+ \rightarrow J/\psi K^+$ used for calibration, and the kinematically similar $B^0 \rightarrow J/\psi K^*$ is used as crosscheck

MC ω distribution/calibration totally compatible with $B^0 \rightarrow J/\psi K_s$ Study correction function between actual mistag and calibrated mistag

Expected	Obtained
$p_0 = \bar{\eta} = 0.35$	$p_0 = 0.333 \pm 0.025$
$p_1 = 1$	$p_1 = 0.71 \pm 0.36$

33

8

OST calibration

B. Souza de Paula - FPCP 2013 - 21/5/2013

34

 ϕ_{s} from $b \rightarrow c\bar{c}s$

• In SM

$$\phi_s = -2\beta_s = -2\arg\left(-\frac{V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*}\right) = (-0.036 \pm 0.002)rad$$

• We measure
$$\phi_s = \phi_s^{SM} + \phi^{NP}$$

• Many NP terms can be added to Φ_s due to mixing: eg. SUSY, extra dimensions, 4th generation

 $B_s \rightarrow J/\psi \Phi$ Fit

• Signal pdf depends on acceptance, flavour tagging and proper-time resolution

$$S(\vec{\lambda}, t, \vec{\Omega}) = \epsilon(t, \vec{\Omega}) \times \left(\frac{1+qD}{2}s(\vec{\lambda}, t, \vec{\Omega}) + \frac{1-qD}{2}\overline{s}(\vec{\lambda}, t, \vec{\Omega})\right) \otimes R_t$$

$B_s \rightarrow J/\psi \Phi$ systematics

Source	Γ_s	$\Delta\Gamma_s$	$ A_{\perp} ^2$	$ A_0 ^2$	δ_{\parallel}	δ_{\perp}	ϕ_s	$ \lambda $
	$[\mathrm{ps}^{-1}]$	$[\mathrm{ps}^{-1}]$			[rad]	[rad]	[rad]	
Stat. uncertainty	0.0048	0.016	0.0086	0.0061	$^{+0.13}_{-0.21}$	0.22	0.091	0.031
Background subtraction	0.0041	0.002	-	0.0031	0.03	0.02	0.003	0.003
$B^0 \rightarrow J/\psi K^{*0}$ background	-	0.001	0.0030	0.0001	0.01	0.02	0.004	0.005
Ang. acc. reweighting	0.0007	-	0.0052	0.0091	0.07	0.05	0.003	0.020
Ang. acc. statistical	0.0002	-	0.0020	0.0010	0.03	0.04	0.007	0.006
Lower decay time acc. model	0.0023	0.002	-	-	-	-	-	-
Upper decay time acc. model	0.0040	-	-	-	-	-	-	-
z + p scale	0.0009	-	-	-	-	-	-	-
Fit bias	-	-	0.0010	-	-	-	-	-
Quadratic sum of syst.	0.0063	0.003	0.0064	0.0097	0.08	0.07	0.009	0.022
Total uncertainties	0.0079	0.016	0.0107	0.0114	$^{+0.15}_{-0.23}$	0.23	0.091	0.038

38

$B_s \rightarrow \phi \phi$ projections

CPV in $B^0 \rightarrow J/\Psi K_S$

$$\begin{split} S_{J\!/\!\psi\,K_{\rm S}^0} &= 0.73 \pm 0.07_{\rm stat} \pm 0.04_{\rm syst} \\ C_{J\!/\!\psi\,K_{\rm S}^0} &= 0.03 \pm 0.09_{\rm stat} \pm 0.01_{\rm syst} \end{split}$$

arXiv:1211.6093v1, accepted by PLB

- First measurement of S in hadronic environment
- C compatible with SM and S with WA $sin 2\beta = 0.679 \pm 0.020$
- Systematics will also go down with more statistics