Charmless Semileptonic B Decays at e^+e^- Colliders

César Beleño On behalf of the Belle Collaboration.

May 23, 2013 Flavor Physics and CP Violation 2013 Búzios, Rio de Janeiro, Brazil

C. Beleño

 $B \rightarrow X_u \ell \nu$ decays

Introduction and Motivation

- Beam energies at B-Factories tuned to produced B pairs through $e^+e^- \rightarrow \Upsilon(4S) \rightarrow B\overline{B}$.
- $\mathcal{B}(\Upsilon(4S) \to B\bar{B}) \approx 96\%$.
- B decays are used to extract CKM matrix elements |V_{cb}|, |V_{ub}|

- Semileptonic decays ideal to study $|V_{ub}|$.
- Two approaches:
 - inclusive*:

$$|V_{ub}| = (4.39 \pm 0.15^{+0.12}_{-0.14}) \times 10^{-3}$$

$$|V_{ub}| = (3.23 \pm 0.30) \times 10^{-3}$$

Disagreement $(2 \rightarrow 3)\sigma$

*HFAG End 2011 (GGOU) ** Simulataneous fit using BCL parametrization, HFAG End 2011

C. Beleño

Reconstruction of B mesons

How to reconstruct Semileptonic decays?

Inclusive $B \rightarrow X_u \ell \nu$

 Decay rates based on Operator Product Expansion (OPE) and Heavy Quark Effective Theory (HQET)

•
$$\Gamma(B \to X_u \ell \nu) = \frac{G_F^2 m_b^5}{192\pi^3} |V_{ub}|$$

free quark decay

Non-perturbative corrections include parameters that need to be precisely measured to extract $|V_{ub}|$, e.g.

- Kinetic energy of *b* quarks, μ_{π}^2 • Chromomagnetic moment, μ_G^2
- Higher order terms: ρ_{LS}^3, ρ_D^3

Experimental Aspects

• $|V_{cb}| \approx 50 |V_{ub}|$

• Full reco of one *B* • Cut on phase space

C. Beleño

 $B \rightarrow X_u \ell \nu$ decays

Inclusive $B \rightarrow X_u \ell \nu$

- Sum over all possible final state hadrons.
- Decay rates based on Operator Product Expansion (OPE) and Heavy Quark Effective Theory (HQET)

• $\Gamma(B \rightarrow X_u \ell \nu) = \frac{G_F^2 m_b^3}{192\pi^3} |V_{ub}|^2 (1 - A_{\rm EW}) A_{\rm QCD \ pert} A_{\rm QCD \ non-pert}$ free quark decay

Non-perturbative corrections include parameters that need to be precisely measured to extract $|V_{ub}|$, e.g.

• Kinetic energy of *b* • Chromomagnetic • Higher order terms: quarks, μ_{π}^2 moment, μ_G^2 ρ_{LS}^3 , ρ_D^3

Experimental Aspects

• $|V_{cb}| \approx 50 |V_{ub}|$

• Full reco of one *B* • Cut on phase space

C. Beleño

Belle Inclusive $B \rightarrow X_u \ell \nu$

- 657 \times 10⁶ $B\bar{B}$ pairs
- Multivariate methods (BDT)
- Access ≈ 90% phase space
- 2D fit to (M_X, q^2) for $p_{\ell}^* > 1$ GeV
- $N_{sig} = 1032 \pm 91$
- Leading Uncertainties: signal SF and bkg modeling.

Fit projections

 $\Delta \mathcal{B}(B \to X_u \ell \nu) = (1.96 \pm 0.17_{\text{stat}} \pm 0.16_{\text{syst}}) \times 10^{-3}$

C. Beleño

Babar Inclusive $B \rightarrow X_u \ell \nu$

- 467 \times 10^{6} $B\bar{B}$ pairs
- Cut based method for Bkg suppression
- Measurement of ΔB in several regions of phase space.
- 2D fit to (M_X, q^2) for $p_\ell^* > 1$ GeV
- $N_{sig} = 1470 \pm 130$ $(p_{\ell}^* > 1 \text{ GeV}^2)$
- Leading Uncertainties: signal SF and bkg modeling.

Fit projections

 $\Delta \mathcal{B}(B \to X_u \ell \nu) = (1.80 \pm 0.13_{\text{stat}} \pm 0.15_{\text{syst}}) \times 10^{-3}$

Inclusive $|V_{ub}|$ $(p_{\ell}^* > 1.0 \text{ GeV})$

7/21

- Reconstruct a particular final state.
- Decay rates depend whether the B meson (pseudoscalar) decays into a vector or pseudoscalar light meson.

• $\frac{d\Gamma(B \to P\ell\nu)}{dq^2} = \frac{G_F^2 p_P^3}{24\pi^3} |V_{ub}|^2 |f_+(q^2)|^2$ (e.g. π, η), $|f_+(q^2)|^2$ is a form factor. • $\frac{d\Gamma(B \to V\ell\nu)}{dq^2} = \frac{G_F^2 p_V q^2}{96\pi^3 m_B C_{\nu}^2} |V_{ub}|^2 (|H_0|^2 + |H_+|^2 + |H_-|^2)$ (e.g. ρ, ω)

• H_0 , H_+ , H_- , helicity functions that can be written in terms of 3 form factors

•
$$q^2 = (P_B - P_m)^2 = (P_\ell + P_\nu)^2$$

 F.F. calculations using different methods (LQCD, LCSR, quark models)

Untagged $B \to \pi \ell \nu$

Fit projections

Untagged Method

- $p_{\ell}^* > 1 \rightarrow 2 \text{GeV}$
- High statistics but also high backgrounds

• Signal yields from fit to
$$(M_{bc}, \Delta E)$$

 $\Delta E = E_B^* - \sqrt{S/2}$
 $M_{bc} = \sqrt{S/4 - |p_B^*|^2}$

Leading syst : detector effect

•
$$\int \mathcal{L}dt = 605 \mathrm{fb}^{-1}$$

- Tight neutrino selection
- Cut based technique
- 2D binned maximum likelihood fit to $(M_{bc}, \Delta E)$ in 13 bins of q^2
- $N_{sig} \approx 21486$

 $\mathcal{B}(B^0 \to \pi^- \ell^+ \nu) = (1.49 \pm 0.04_{\text{stat}} \pm 0.07_{\text{syst}}) \times 10^{-4}$

C. Beleño

 $B \rightarrow X_u \ell \nu$ decays

Babar Untagged $B \rightarrow \pi \ell \nu$

Fit projections on ΔE and $m_{\rm ES}$ in regions of q^2

PRD:86:092004 (2012) Loose Untagged

•
$$\int \mathcal{L}dt = 416.1 \text{fb}^{-1}$$

• $N_{\rm sig} = 12448 \pm 361$ (Combined π^+ and π^0)

•
$$\mathcal{B}(B \to \pi \ell^+ \nu) =$$

(1.45 ± 0.04_{stat} ± 0.06_{syst}) × 10⁻⁴
(Averaged using isospin)

Semileptonic Tag Method

- $B_{\text{tag}} \rightarrow D^{(*)} \ell \nu$ with $D^{(*)}$ reconstructed in hadronic modes
- Identify two leptons $\ell^+\ell^-$

• Kinematic constraint

$$P_{\nu}^{*2} = 0 = (P_B^* - P_Y^*)^2$$

•
$$\cos \theta_{BY} = \frac{2E_B E_Y - m_B^2 - m_Y^2}{2|p_B||p_Y|}$$

• Discriminating variable: $x_B^2 (\cos^2 \phi_B)$

•
$$x_B^2 = 1 - \frac{1}{\sin^2 \theta_{12}^*} (\cos^2 \theta_{B1}^* + \cos^2 \theta_{B2}^* - 2\cos \theta_{B1}^* \cos \theta_{B2}^* \cos \theta_{12}^*)$$

- For signal $0 \le x_B^2 \le 1$
- Leading systematic: B_{tag} efficiency

SL Tag $B \to \pi \ell \nu$

Hadronic Tag $B \to \pi \ell \nu$

 $B^+ \to \pi^0 \ell \nu$

Hadronic Tag Method

- Loose selection on P_{ℓ}
- Know kinematic and flavor of signal B
- Discriminating variable : M²_{miss}
- Leading syst : B_{tag} eff. and shapes of bkg
- Belle uses B tagging method based on NeuroBayes [NIM A654 (2011)]

Components:

Signal Yields & branching ratios at Belle (old, new)

$\begin{array}{cccc} B^+ \to \pi^0 \ell \nu & 49 \pm 9 & 232 \pm 23 & 0.80 \pm 0.08 \pm \\ B^0 \to \pi^+ \ell \nu & 59 \pm 10 & 463 \pm 28 & 1.49 \pm 0.09 \pm \end{array}$	Channel	Yield*	Yield	$B[10^{-4}]$
	$\begin{array}{c} B^+ \to \pi^0 \ell \nu \\ B^0 \to \pi^+ \ell \nu \end{array}$	49±9 59±10	232±23 463±28	$\begin{array}{c} 0.80 \pm 0.08 \pm 0.04 \\ 1.49 \pm 0.09 \pm 0.07 \end{array}$

*arXiv:0812.1414v1[hep-ex], Dataset:605[fb⁻¹]

 $B \rightarrow X_u \ell \nu$ decays

Branching Fraction Comparison $B \rightarrow \pi \ell \nu$

Isospin relation $\mathcal{B}(B^0 \to \pi^- \ell^+ \nu) = 2 \frac{\tau_{B^0}}{\tau_{B^+}} \mathcal{B}(B^+ \to \pi^0 \ell^+ \nu)$

World Average $\mathcal{B}(B^0 \rightarrow \pi^- \ell^+ \nu)$ (1.42 ± 0.03 ± 0.04) × 10⁻⁴

Note

 Most precise measurements to date: untagged. B(B⁰ → π⁻ℓ⁺ν) = (1.49 ± 0.04 ± 0.07) × 10⁻⁴ (Belle untagged)
 Preliminary results from Belle Had. tag are competitive with untagged results B(B⁰ → π⁻ℓ⁺ν) = (1.49 ± 0.09 ± 0.07) × 10⁻⁴ (Belle Had. tag)

Extraction of $|V_{ub}|$ from $B \to \pi \ell \nu$

Depending on the form factor model $|V_{ub}|$ can be extracted via:

$$\begin{split} |V_{ub}| &= \sqrt{\frac{\Delta \mathcal{B}(q^2)}{\tau_{B\zeta}}}\\ \text{where } \tau_{B^0} &= 1.519 \pm 0.007 \text{ ps},\\ \tau_{B^+} &= 1.649 \pm 0.008 \text{ ps}\\ \text{and } \zeta \text{ is given by the theoretical}\\ \text{calculation:} \end{split}$$

$$\begin{split} |V_{ub}| & \text{can also be extracted from a} \\ \text{simultaneous fit of the BCL} \\ [PRD79:013008 (2009)] & \text{to data and} \\ LQCD & \text{calculations. Using untagged} \\ \text{measurements (2011) this leads to} \\ |V_{ub}| &= (3.23 \pm 0.30) \times 10^{-3}. \\ \chi^2/DOF &= 58.9/31 \end{split}$$

C. Beleño

Exclusive $|V_{ub}|$ from $B^0 \rightarrow \pi^- \ell^+ \nu$

QCD calculations to extract $|V_{ub}|$:

- KMOW (LCSR, q² < 12 GeV²) PRD 83 (2011) 094031
- HPQCD (Unquenched LQCD, q² > 16 GeV²) PRD 73 (2005) 074502
- FNAL (Quenched LQCD, q² > 16 GeV²) NPPS 140 (2005) 461
- Ball/Zwicky (LCSR, q² < 16 GeV²) PRD 71 (2005) 014015

Error dominated by theoretical uncertainties.

* To be submitted to PRD

** PRD:86:092004 (2012)

Inner bars are syst. err. and outer bars are theo. err.

C. Beleño

 $B \rightarrow X_u \ell \nu$ decays

FPCP2013

16/21

Other Exclusive channels $(B \rightarrow \eta^{(\prime)} \ell \nu)$

C. Beleño

 $B \rightarrow X_u \ell \nu$ decays

$B^+ \rightarrow \rho^0 \ell^+ \nu$ and $B^+ \rightarrow \rho^- \ell^+ \nu$

C. Beleño

 $B \rightarrow X_u \ell \nu$ decays

FPCP2013

18/21

$B^+ \to \omega \ell^+ \nu$

C. Beleño

BABAR loose untagged: $\mathbf{B}^* \to \oplus \mathbf{I}^* \mathbf{v}$

1.19 ± 0.16 ± 0.09 (New).

n

0.5

 $B(B^* \rightarrow \omega I^* \nu) \times 10^{-4}$

 $B \rightarrow X_{\mu} \ell \nu$ decays

-0.5

Belle Hadronic Tag

The sum of all measured exclusive modes only represents $\approx 26\%$ of the inclusive measurement, $\mathcal{B}(B \to X_u \ell \nu) = (2.33 \pm 0.22) \times 10^{-3}$ [PDG].

Necessary: measure higher mass

resonances to fully understand the

charmless semileptonic decay spectrum.

Search for $B^- \rightarrow p \bar{p} \ell^- \nu$

- Phenomenological calculation $\mathcal{B}(B^- \rightarrow p\bar{p}\ell^-\nu) =$ $(1.04 \pm 0.38) \times 10^{-4}$ [PLB 704, 495 (2011)]
- First evidence (3.19σ) of baryon-antibaryon system in SL decays at Belle
- Hadronics Tag (NeuroBayes)

Unbinned Maximum Likelihood Fit to $M_{\rm miss}^2$

Summary and Prospects

- Disagreement between inclusive and exclusive V_{ub} still present.
- Error in exclusive V_{ub} from $B \rightarrow \pi \ell \nu$ dominated by theoretical Uncertainties.
- Hadronic tag measurements are dominated by statiscal uncertainties.
- Need updated models for (ρ, ω, η) to make possible a $|V_{ub}|$ measurement.
- First evidence of baryon-antibaryon system in SL decays.
- Study higher charmless resonances with $m_{X_u} > 1$ GeV.

Back Up Slides

C. Beleño

Systematic Uncertainties Inclusive $|V_{ub}|$ Belle

TABLE I.	Uncertainties	in the	partial	charmless	semileptonic
branching t	fraction (in per-	cent).			

$p_{\ell}^{*B} > 1.0 \text{ GeV}$	$\Delta \mathcal{B}/\mathcal{B}$ (%)
$\overline{\mathcal{B}(D^{(*)}\ell\nu)}$	1.2
$(D^{(*)}\ell\nu)$ form factors	1.2
$\mathcal{B}(D^{**}e\nu)$ & form factors	0.2
$B \rightarrow X_u \ell \nu \text{ (SF)}$	3.6
$B \to X_u \ell \nu \ (g \to s\bar{s})$	1.5
$\mathcal{B}(B \to \pi/\rho/\omega\ell\nu)$	2.3
$\mathcal{B}(B \to \eta, \eta' \ell \nu)$	3.2
$\mathcal{B}(B \to X_u \ell \nu)$ unmeasured	2.9
Cont./Comb.	1.8
Sec./Fakes/Fit.	1.0
PID/Reconstruction	3.1
BDT	3.1
Systematics	8.1
Statistics	8.8

PRL:104:021801 (2010)

C. Beleño

 $B \rightarrow X_u \ell \nu$ decays

Systematic Uncertainties Inclusive $|V_{ub}|$ Babar

Phase space restriction	$M_X < 1.55$	$M_{\chi} < 1.70$	$P_{+} < 0.66$	$M_X < 1.70 \text{ GeV},$ $a^2 > 8 \text{ GeV}^2$	$M_{\rm m} = a^2$	$p_{\ell}^* > 1.0$	$p_{\ell}^* > 1.3$
r hase space restriction		001	001	<i>q</i> > 0 00 1	m _X q	001	001
Data statistical uncertainty	7.1	8.9	8.9	8.0	7.1	9.4	8.8
MC statistical uncertainty	1.3	1.3	1.3	1.6	1.1	1.1	1.2
		Det	tector effects				
Track efficiency	0.4	1.0	1.1	1.7	0.7	1.2	1.0
Photon efficiency	1.3	2.1	4.0	0.7	1.0	0.9	0.9
π^0 efficiency	1.2	0.9	1.1	0.9	0.9	2.9	1.1
Particle identification	1.9	2.4	3.3	2.9	2.3	2.9	2.2
K_L production/detection	0.9	1.3	1.1	2.1	1.6	1.3	0.6
K_S production/detection	0.8	1.4	1.7	2.1	1.2	1.3	0.3
		Sigr	al simulation				
Shape function parameters	2.0	1.3	1.2	0.7	5.4	6.4	6.6
Shape function form	1.2	1.6	2.6	1.2	1.5	1.1	1.1
Exclusive $\bar{B} \rightarrow X_{\mu} \ell \bar{\nu}$	0.6	1.3	1.6	0.7	1.9	5.3	3.4
ss production	1.2	1.6	1.1	1.0	2.7	3.1	2.4
		Backgr	ound simulation	n			
B semileptonic branching ratio	0.9	1.4	1.5	1.4	1.0	0.8	0.7
D decays	1.1	0.6	1.1	0.6	1.1	1.6	1.5
$B \rightarrow D\ell \nu$ form factor	0.5	0.5	1.3	0.4	0.4	0.1	0.2
$B \rightarrow D^* \ell \nu$ form factor	0.7	0.7	0.9	0.7	0.7	0.7	0.7
$B \rightarrow D^{**} \ell \nu$ form factor	0.8	0.9	1.3	0.4	0.9	1.0	0.3
$B \rightarrow D^{**}$ reweighting	0.5	1.4	1.5	1.0	1.9	0.4	1.5
		$m_{\rm FS}$ back	ground subtrac	tion			
$m_{\rm FS}$ background subtraction	2.0	2.7	1.9	2.6	1.9	2.0	2.5
Combinatorial backg.	1.8	1.8	2.6	1.8	1.0	2.1	0.5
		No	ormalization				
Total semileptonic BF	1.4	1.4	1.4	1.4	1.4	1.4	1.4
Total systematic uncertainty	5.5	6.7	8.3	6.6	8.4	11.0	9.3
Total experimental uncertainty	9.0	11.1	12.2	10.4	11.0	14.4	12.8

PRD:86:032004 (2012)

C. Beleño

 $B \rightarrow X_u \ell \nu$ decays

Inclusive $|V_{ub}|$ in kinematic regions Babar

QCD calculation	Phase space region	$\Delta\Gamma_{theory}(ps^{-1})$	$ V_{ub} (10^{-3})$
	$M_X \le 1.55 \text{ GeV}$	$39.3^{+4.7}_{-4.3}$	$4.17 \pm 0.15 \pm 0.12 ^{+0.2}_{-0.2}$
	$M_{\chi} \le 1.70 \text{ GeV}$	$46.1^{+5.0}_{-4.4}$	$3.97 \pm 0.17 \pm 0.14^{+0.2}_{-0.2}$
	$P_+ \le 0.66 \text{ GeV}$	$38.3^{+4.7}_{-4.3}$	$4.02\pm 0.18\pm 0.16^{+0.2}_{-0.2}$
BLNP	$M_{\chi} \leq 1.70 \; {\rm GeV}, q^2 \geq 8 \; {\rm GeV^2}$	$23.8^{+3.0}_{-2.4}$	$4.25\pm0.19\pm0.13^{+0.2}_{-0.2}$
	$M_X - q^2, \ p_\ell^* > 1.0 \ { m GeV}$	$62.0^{+6.2}_{-5.0}$	$4.28 \pm 0.15 \pm 0.18 \substack{+0.1 \\ -0.2}$
	$p_{\ell}^* > 1.0 \text{ GeV}$	$62.0^{+6.2}_{-5.0}$	$4.30 \pm 0.18 \pm 0.21^{+0.1}_{-0.2}$
	$p_{\ell}^* > 1.3 \text{ GeV}$	$52.8^{+5.3}_{-4.3}$	$4.29 \pm 0.18 \pm 0.20^{+0.1}_{-0.2}$
	$M_{\chi} \le 1.55 \text{ GeV}$	$35.3^{+3.3}_{-3.5}$	$4.40\pm 0.16\pm 0.12^{+0.2}_{-0.1}$
	$M_{\chi} \le 1.70 \text{ GeV}$	$42.0_{-4.8}^{+4.8}$	$4.16\pm 0.18\pm 0.14^{+0.2}_{-0.2}$
	$P_+ \le 0.66 \text{ GeV}$	$36.9^{+5.5}_{-5.8}$	$4.10\pm 0.19\pm 0.17^{+0.3}_{-0.2}$
DGE	$M_{\chi} \leq 1.70 \; {\rm GeV}, q^2 \geq 8 \; {\rm GeV^2}$	$24.4^{+2.4}_{-2.0}$	$4.19\pm 0.19\pm 0.12^{+0.1}_{-0.1}$
	$M_X - q^2, \ p_\ell^* > 1.0 \ { m GeV}$	$58.7^{+3.5}_{-3.2}$	$4.40 \pm 0.16 \pm 0.18^{+0.1}_{-0.1}$
	$p_{\ell}^* > 1.0 \text{ GeV}$	$58.7^{+3.5}_{-3.2}$	$4.42 \pm 0.19 \pm 0.23^{+0.1}_{-0.1}$
	$p_{\ell}^* > 1.3 \text{ GeV}$	$50.4^{+3.3}_{-3.0}$	$4.39\pm0.19\pm0.20^{+0.1}_{-0.1}$
	$M_{\chi} \le 1.55 \text{ GeV}$	$41.0^{+4.6}_{-3.8}$	$4.08\pm 0.15\pm 0.11\substack{+0.2\\-0.2}$
	$M_{\chi} \le 1.70 \text{ GeV}$	$46.8^{+4.2}_{-3.6}$	$3.94 \pm 0.17 \pm 0.14^{+0.1}_{-0.1}$
	$P_+ \le 0.66 \text{ GeV}$	$44.0^{+8.6}_{-6.3}$	$3.75 \pm 0.17 \pm 0.15^{+0.5}_{-0.5}$
GGOU	$M_{\chi} \le 1.70 \text{ GeV}, q^2 \ge 8 \text{ GeV}^2$	$24.7^{+3.2}_{-2.4}$	$4.17\pm 0.18\pm 0.12^{+0.2}_{-0.2}$
	$M_{\chi} - q^2, \ p_{\ell}^* > 1.0 \ { m GeV}$	$60.2^{+3.0}_{-2.5}$	$4.35\pm 0.16\pm 0.18^{+0.0}_{-0.1}$
	$p_{\ell}^* > 1.0 \text{ GeV}$	$60.2^{+3.0}_{-2.5}$	$4.36 \pm 0.19 \pm 0.23^{+0.0}_{-0.1}$
	$p_{\ell}^* > 1.3 \text{ GeV}$	$51.8^{+2.8}_{-2.3}$	$4.33\pm0.18\pm0.20^{+0.1}_{-0.1}$
	$M_X \le 1.55 \text{ GeV}$	$47.1^{+5.2}_{-4.3}$	$3.81 \pm 0.14 \pm 0.11 \substack{+0.1 \\ -0.2}$
ADFR	$M_X \le 1.70 \text{ GeV}$	$52.3^{+5.4}_{-4.5}$	$3.73 \pm 0.16 \pm 0.13^{+0.1}_{-0.1}$
	$P_+ \le 0.66 \text{ GeV}$	$48.9^{+5.6}_{-4.6}$	$3.56 \pm 0.16 \pm 0.15^{+0.1}_{-0.1}$
	$M_{\chi} \le 1.70 \text{ GeV}, q^2 \ge 8 \text{ GeV}^2$	$30.9^{+3.0}_{-2.5}$	$3.74 \pm 0.16 \pm 0.11 \substack{+0.1 \\ -0.1}$
	$M_{\chi} - q^2, \ p_{\ell}^* > 1.0 \ { m GeV}$	$62.0^{+5.7}_{-5.0}$	$4.29 \pm 0.15 \pm 0.18 \substack{+0.1 \\ -0.1}$
	$p_{\ell}^* > 1.0 \text{ GeV}$	$62.0^{+5.7}_{-5.0}$	$4.30 \pm 0.19 \pm 0.23^{+0.1}_{-0.1}$
	$p_{\ell}^* > 1.3 \text{ GeV}$	$53.3^{+5.1}_{-4.4}$	$4.27 \pm 0.18 \pm 0.19^{+0.1}_{-0.1}$

C. Beleño

 $B \rightarrow X_u \ell \nu$ decays

Systematic Uncertainties Semileptonic Tag Belle

Table: Summary of systematic errors (%) for $\mathcal{B}(B^0 \to \pi^- / \rho^- \ell^+ \nu)$.

		$B^0 \rightarrow \pi^- \ell^+ \nu$					$B^0 \rightarrow \rho^- \ell^+ \nu$			
	q	² interva	al (GeV	$(^{2}/c^{2})$		q ²	² interva	l (Ge∖	$(^{2}/c^{2})$	
Source	$q^2 < 8$	8 - 16	≥ 16	< 16	all	$q^2 < 8$	8 - 16	≥ 16	< 16	all
Tracking efficiency	1	1	1	1	1	1	1	1	1	1
π^0 reconstruction	-	-	-	-	-	2	2	2	2	2
Lepton identification	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1
Kaon identification	2	2	2	2	2	2	2	2	2	2
$D^*\ell\nu$ calibration	9.3	9.3	9.3	9.3	9.3	9.3	9.3	9.3	9.3	9.3
$Br(X_u\ell\nu)$ in the fitting	0.8	2.4	1.8	1.6	1.4	4.8	3.9	23.8	1.9	7.1
$B\bar{B}$ background shape	1.1	2.2	2.8	1.2	1.3	3.8	2.9	17.0	3.0	6.1
$Br(D^{**}\ell u)$	1.0	1.5	0.2	1.2	0.9	0.5	0.3	2.5	0.3	0.8
κ_{I}^{0} production rate	0.1	0.3	0.4	0.2	0.3	1.0	0.7	2.9	0.8	1.3
	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1
f_+/\bar{f}_0	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7
χ_d	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2	2.2
exp. total	10.4	10.9	10.8	10.5	10.5	12.1	11.5	31.3	11.1	14.1
FF for signal	0.7	3.8	0.9	2.2	1.8	6.1	3.5	6.8	4.3	3.6
FF for cross-feed	1.8	2.1	1.5	1.9	1.4	0.5	0.7	2.4	0.6	1.0
FF total	1.9	4.3	1.7	2.9	2.3	6.1	3.6	7.2	4.3	3.7

C. Beleño

Systematic Uncertainties Semileptonic Tag Babar

Table: Summary of systematic errors (%) for $\mathcal{B}(B^+ \to \pi^0/\rho^0 \ell^+ \nu)$.

		$B^+ \rightarrow \pi^0 \ell^+ \nu$					$B^+ \rightarrow \rho^0 \ell^+ \nu$			
	q	² interva	ıl (Ge∨	$(^{2}/c^{2})$		q ²	q^2 interval (GeV ² / c^2)			
Source	$q^2 < 8$	8 - 16	≥ 16	< 16	all	$q^2 < 8$	8 - 16	≥ 16	< 16	all
Tracking efficiency	-	-	-	-	-	2	2	2	2	2
π^0 reconstruction	2	2	2	2	2	-	-	-	-	-
Lepton identification	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1	2.1
Kaon identification	-	-	-	-	-	4	4	4	4	4
$D^*\ell\nu$ calibration	9.2	9.2	9.2	9.2	9.2	9.2	9.2	9.2	9.2	9.2
$Br(X_u \ell \nu)$ in the fitting	0.2	3.1	3.0	2.1	1.2	2.0	3.7	20.0	3.0	6.6
$B\bar{B}$ background shape	1.9	5.5	2.7	4.3	3.7	5.3	4.3	16.3	1.5	2.8
$Br(D^{**}\ell u)$	1.3	0.8	0.8	0.9	0.9	0.2	1.6	3.0	0.9	1.4
κ_{I}^{0} production rate	0.3	1.1	0.6	0.8	0.8	0.3	0.2	1.9	0.1	0.4
	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1
f_+/f_0	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7
exp. total	10.1	11.8	10.7	11.0	10.7	12.1	12.2	28.1	11.2	12.9
FF for signal	1.2	0.5	1.3	0.3	0.2	2.1	7.1	3.9	3.7	3.5
FF for cross-feed	0.7	0.8	0.6	0.8	0.6	3.3	1.1	1.0	1.5	1.2
FF total	1.4	0.9	1.4	0.8	0.6	3.9	7.2	4.0	4.0	3.7

Systematic Uncertainties Semileptonic Tag Babar

Table: Summary of systematic errors (%) for $\mathcal{B}(B^+ \to \pi^0 \ell^+ \nu) \& \mathcal{B}(B^0 \to \pi^- \ell^+ \nu)$.

	$\mathcal{B}(B^+ \to \pi^0 \ell^+ \nu)$	$\mathcal{B}(B^0\to\pi^-\ell^+\nu)$
π^0 reconstruction	3%	-
ℓ identification	3%	3%
Tag efficiency	1.7%	0.5%
Track Efficiency	0.36%	0.72%
BB pair counting	1.1%	1.1%
Final State radiation	1.2%	1.2%
$\Upsilon(4S) \rightarrow B\bar{B}$ fraction	1.4%	1.4%
FF and BF	4%	3.8%
Total	6.5%	5.4%

Exclusive Untagged Babar

Decay mode	ecay mode $\pi^-\ell^+\nu$					$\pi^0\ell^+ u$				
q^2 range (GeV ²)	$q^2 < 12$	$q^2 < 16$	$q^2 > 16$	$0 < q^2 < 26.4$	$q^2 < 12$	$q^2 < 16$	$q^2 > 16$	$0 < q^2 < 26.4$		
Unfolded yield $\Delta \mathcal{B}(q^2) \ (10^{-4})$	5604.1 0.83	6982.4 1.07	2314.2 0.40	9296.5 1.47	2231.7 0.46	2666.7 0.61	537.3 0.16	3204.1 0.77		
Statistical error	4.3	3.8	6.7	3.5	6.6	5.3	17.8	5.7		
Detector effects	3.4	3.5	3.2	2.8	2.9	2.8	3.0	2.6		
Continuum bkg	0.4	0.4	1.4	0.4	1.2	0.8	7.1	1.1		
$b \rightarrow u \ell \nu b kg$	1.6	1.4	2.1	1.3	1.7	1.5	5.9	1.9		
$b \rightarrow c \ell \nu$ bkg	0.6	0.5	0.6	0.5	0.6	0.4	1.0	0.4		
Other effects	2.2	2.1	2.1	2.1	2.1	2.1	2.5	2.0		
Total uncertainty	6.2	5.8	8.1	5.1	7.9	6.5	20.4	6.9		

TABLE III. Values of signal yields, $\Delta \mathcal{B}(q^2)$ and their relative uncertainties (%) for $B^0 \rightarrow \pi^- \ell^+ \nu$ and $B^+ \rightarrow \pi^0 \ell^+ \nu$ decays.

PRD:86:092004 (2012)

Decay mode		Com	bined $\pi \ell^+ \nu$		$\omega \ell^+ \nu$	$\eta'\ell^+ u$	
q^2 range (GeV ²)	$q^2 < 12$	$q^2 < 16$	$q^2 > 16$	$0 < q^2 < 26.4$	$0 < q^2 < 20.2$	$0 < q^2 < 22.4$	$0 < q^2 < 18.7$
Unfolded yield $\Delta \mathcal{B}(q^2) (10^{-4})$	7805.4 0.83	9618.9 1.08	2829.0 0.37	12447.9 1.45	1860.8 1.19	867.3 0.38	141.1 0.24
Statistical error	3.6	3.2	5.8	3.0	13.0	13.7	34.9
Detector effects	3.7	3.8	3.5	3.1	3.9	9.8	7.7
Continuum bkg	0.4	0.6	3.3	0.6	3.2		5.8
$b \rightarrow u \ell \nu b kg$	1.6	1.4	4.0	1.4	5.1	8.4	4.9
$b \rightarrow c \ell \nu b kg$	0.4	0.4	0.4	0.3	1.0	2.1	3.3
Other effects	1.8	1.7	1.5	1.6	1.8	1.8	2.4
Total uncertainty	5.8	5.5	8.7	4.9	15.0	19.0	36.7

TABLE IV. Values of signal yields, $\Delta \mathcal{B}(q^2)$ and their relative uncertainties (%) for combined $B \to \pi \ell^+ \nu$, $B^+ \to \omega \ell^+ \nu$, combined $B^+ \to \eta \ell^+ \nu$ ($\gamma \gamma$ and 3π decay channels) and $B^+ \to \eta' \ell^+ \nu$ decays.

PRD:86:092004 (2012)

Untagged $B \rightarrow \omega \ell \nu$ Babar (PRD:87:032004(2013))

Distribution of $(\Delta E, m_{ES})$

for true ω signal

 ω invariant mass in data

Signal Yields & branching ratios

Channel	Yield	$B[10^{-4}]$
$B^+ \to \omega \ell \nu$	1125 ± 131	$1.21 \pm 0.14 \pm 0.08$

Exclusive Had Tag Belle (To be submitted to PRD)

Source of uncertainty	Assign	ed syste	matic unc	ertainty for	$\bar{B} \to X_u \ell^- \bar{\nu}_\ell$ decays
X_u	π^+	π^0	$ ho^+$	$ ho^0$	$\omega(3\pi)$
Detector Simulation:					
Track reconstruction	0.34	-	0.34	0.68	0.68
π^0 reconstruction	-	2.0	2.0	-	2.0
Lepton identification	1.0	1.0	1.0	1.0	1.0
Kaon veto	0.9	-	1.0	2.0	2.0
Continuum description	1.0	0.5	0.5	0.7	0.0
X_u cross feed	0.9	-	5.0	2.4	-
Tag calibration	4.5	4.2	4.5	4.2	4.2
Combined	4.9	4.8	7.2	5.4	5.2
Form Factor Shapes:	1.1	1.9	1.7	1.3	3.8
Total systematic error	5.0	5.1	7.4	5.6	6.4

C. Beleño