Tau physics at e⁺e⁻ colliders

Steven Robertson

Institute of Particle Physics & McGill University

Presented at Flavour Physics & CP Violation (FPCP 2013) on behalf of BABAR and Belle

May 19-24, 2013 Buzios, Brazil

Outline

- $\tau^+\tau^-$ at B factories
- Branching fraction measurements and mass spectra:

$$- \tau \rightarrow h^{-} K_{s}^{0}(\pi^{0}) \nu_{\tau} \qquad (h = K, \pi)$$

$$- \tau \rightarrow h^{-} K_{s}^{0} K_{s}^{0} (\pi^{0}) \nu_{\tau}$$

- 3 and 5 -prong branching fractions
- CP violation in $\tau \to \pi \ K_s^{\ 0}(n\pi^0) \ v_{\tau}$
 - Charge asymmetry
 - Angular observables
- Lepton Flavour Violation (LFV)
 - $\tau \rightarrow l h^+ h'^ (h,h' = K,\pi)$

 $- \quad \tau \xrightarrow{} \Lambda h$

Tau physics @ B factories

 $\tau^{+}\tau^{-}$ pairs are copiously produced at B factories, with production cross section comparable to $B\overline{B}$

- ~919k $\tau^+\tau^-$ /fb⁻¹, or typically ~430M (**B**ABAR), ~780M (Belle)
 - 1-2 orders of magnitude statistical improvement over previous experiments

- K-π separation
- γ resolution, π^0 , η reconstruction
- Reconstruction/vertexing of $K_s^{0} \rightarrow \pi^+ \pi^-$
- Clean analysis environment with well-defined CM energy and good non-τ background separation

Methodology

 e^+e^- collisions at CM energy of ~10.58 GeV produce jet-like $\tau^+\tau^-$ pairs in CM frame

τ⁺ and τ⁻ decay products well separated due to boost; use "one-prong" (e,μ,π) or lepton (e,μ) tag in one hemisphere to define clean inclusive τ sample in opposite hemisphere

 kinematic and event shape characteristics to reduce Bhabha, di-muon, qq and 2-photon backgrounds (analysis specific)

Taus as precision probes

Wealth of measurements of tau properties and decays over past decades provide precise tests of weak (and strong) interaction, fundamental symmetries etc.

High statistics, inclusive τ data samples from B factories well suited to precisely probe very rare and forbidden processes

Rare SM processes:

- $|V_{us}|$
- QCD/hadronization
- New physics searches (e.g. CP violation)

Non-SM processes:

 Indirect probes of new physics at very high mass scales

LFV: see talk by G. Signorelli

$\tau^{\overline{}} \rightarrow h^{\overline{}} K_s^{0}(K_s^{0})(\pi^{0}) v_{\tau}$

500

400

300

200

100

0.48

Entries/0.25 MeV/c²

Recent measurements of high multiplicity modes, with multiple charged and neutral kaons; $\tau \to h^- K_s^{0}(\pi^0)v_{\tau}$ or $\tau \to h^- K_s^{0}(\pi^0)v_{\tau}$

- Require 1-prong e,µ tags with 3 or 5 charged tracks in signal hemisphere
- Reconstruct K_s⁰ candidates from π⁺π⁻ combinations, with displaced vertex requirements:
 - > 3σ significance with respect to beam spot location
- π^0 candidates from $\gamma\gamma$ combinations (E_{γ} > 30MeV) satisfying 0.115 < m($\gamma\gamma$) < 0.150 GeV/c²

Tag-side track required to have momentum <4 GeV/c to suppress non-τ backgrounds

0.49

• residual level of ~1% from $q\overline{q}$ continuum

0.5

- Data

Bkgd

0.51

 $\pi^+ \pi^-$ Mass (GeV/c²)

 $\pi^- K^0_S K^0_S$

 $\pi^{-} K_{S}^{0} K_{S}^{0} \pi^{0}$

0.52

\Rightarrow Dominant backgrounds are cross feed from related $\tau \,$ modes

Branching Fractions

Branching fraction measurements from *BABAR* and **Belle** of modes with one or two K_s^{0} :

 $\pi^{\text{-}}$ mode BFs determined simultaneously to account for crossfeed

Mass spectra

May 22, 2013

$\tau \rightarrow \pi K_s^0 K_s^0(\pi^0) v_{\tau}$

BABAR 468 fb⁻¹ Phys. Rev. D 86, 092013 (R), 2012

May 22, 2013

BABAR 468 fb⁻¹ 3 & 5 -prong decays Phys. Rev. D 86, 092010, 2012

Branching fractions and spectra of non-K⁰ modes

- $\tau \rightarrow (3\pi)^{-}\eta \nu_{\tau}$, $\tau \rightarrow (3\pi)^{-}\omega \nu_{\tau}$ and $\tau \rightarrow \pi^{-}f_{1}(1285) \nu_{\tau}$ and non-resonant modes
- also first limits on 5-prong modes with kaons: •

May 22, 2013

2500

2000 1500

1000

 $\tau^- \rightarrow \pi^- f_1 V_2$

 $f_1 \rightarrow 2\pi^+ 2\pi^-$

I. I. Bigi and A. I. Sanda, Phys. Lett. B 625, 47 (2005). D(-+ - + W0 =) = D(-- - - W0 =)

decay rate asymmetry in SM due to CP violation in kaon sector

CP violation in
$$\tau \to \pi \operatorname{K}^0_{s}(\geq 0\pi^0)$$

Two distinct possibilities for CP violation in tau decays:

 $A_Q = \frac{\Gamma\left(\tau^+ \to \pi^+ K_s^0 \ \overline{\nu}_\tau\right) - \Gamma\left(\tau^- \to \pi^- K_s^0 \ \nu_\tau\right)}{\Gamma\left(\tau^+ \to \pi^+ K_s^0 \ \overline{\nu}_\tau\right) + \Gamma\left(\tau^- \to \pi^- K_s^0 \ \nu_\tau\right)}$

Tau decays to final states containing a K_s^0 predicted to have a non-zero

- Measured asymmetry depends on decay time of K_s^0 \Rightarrow important to consider experimental efficiency

Y. Grossman and Y. Nir, arXiv:1110.3790 [hep-ph]

• CP violation in angular observables in $\tau \to \pi K_s^{0} v_{\tau}$ arising from charged scalar boson exchange

•

- not detectable in (integrated) branching fractions
- previously studied by CLEO

G. Bonvicini et al., (CLEO Collaboration) Phys. Rev. Lett 88, 111803 (2002).

May 22, 2013

0.9 $t / \tau_{\kappa_c^0}$

(Y. Grossman & Y. Nir)

time

•

To compare with SM, correct for signal selection efficiency as function of decay

e-tag μ -tag Detector and selection bias 0.12%0.08%0.05%0.06%**Background** subtraction K^0/\overline{K}^0 interaction 0.01%0.01% 0.13%0.10% Total

backgrounds, as well as for asymmetry induced by nuclear interaction cross sections for K^0 , K^0

0.6

0.4 0.2

CPV in $\tau \to \pi \operatorname{K}_{s}^{0} (\geq 0\pi^{0}) v_{\tau}$

"Raw" charge asymmetry corrected for for presence of non-signal τ B. R. Ko et al., arXiv:1006.1938v1 [hep-ex] Efficiency 0.8

02 03 04 05 06

BABAR

PRD. 85, 031102(R) (2012)

CP violation in $\tau \rightarrow \pi K_s^0 v_{\tau}$ Belle Phys. Rev. Lett., 107, 131801 (2011)

Search for CP violation in angular decay distributions in $\tau \to \pi K_s^{\ 0} v_{\tau}$

 Charged Higgs contribution modifies the scalar form factor contribution:

$$F_S(Q^2) \rightarrow \tilde{F}_S(Q^2) = F_S(Q^2) + \frac{\eta_S}{m_\tau} F_H(Q^2)$$

 Asymmetry A^{cp} defined in bins of Q² as difference in mean value of cosβcosψ between τ⁺ and τ⁻ decays

No evidence of significant asymmetry seen in data:

 $|\mbox{ Im}(\eta_s)|$ < 0.026 at 90% CL *

* limit specific to form factor parametrization

FPCP2013

3 Steven Robertson

Lepton Flavor Violation (LFV)

Lepton Flavor Violation forbidden in SM in absence of neutrino masses, but permitted at O(10⁻⁵⁴) via mixing of massive neutrinos

- Permitted at experimentally accessible levels in many SM extensions e.g. via non-diagonal slepton mass matrices in SUSY
 - \Rightarrow clean probe of new physics

"Neutrino-less" experimental signature: exclusively reconstruct tau from all final-state daughters

- exploit precise knowledge of beam energies and extract peaking signal in " $m_{\tau} \Delta E$ ", analogous to B decays
- Nothing in the SM peaks at m_{τ} ...

$\tau \rightarrow l hh' (h=K,\pi)$

Search for both LFV $\tau^- \rightarrow l^- h^+ h^{--}$ and LNV $\tau^- \rightarrow l^+ h^- h^{--}$ modes

- 3 prompt charged tracks (signal)
 + 1 prong (tag)
- single identified signal-side lepton and identified charged hadrons determine signal mode
- dominant backgrounds (τ⁺τ⁻, qq, 2-photon etc) specific to signal mode

In signal events, missing momentum entirely due to tag side

- Exploit M_{miss}, P_{miss} to reduce τ⁺τ⁻ combinatorial backgrounds
- hadronic-tag events possess only single neutrino, while lepton-tag posses two neutrinos

$\tau \rightarrow l hh' (h=K,\pi)$

Belle 854 fb⁻¹ Phys. Lett. B719 346 (2013).

Signal region defined as ellipse in $m_{lhh'} - \Delta E$ plane spanning ±3 σ of expected signal peak

 backgrounds are extrapolated from data sidebands

Mode	ε (%)	$N_{\rm BG}$	$\sigma_{\rm syst}$ (%)	$N_{\rm obs}$	s_{90}	$B(10^{-8})$
$\tau^- ightarrow \mu^- \pi^+ \pi^-$	5.83	0.63 ± 0.23	5.3	0	1.87	2.1
$\tau^- \to \mu^+ \pi^- \pi^-$	6.55	0.33 ± 0.16	5.3	1	4.02	3.9
$\tau^- \to e^- \pi^+ \pi^-$	5.45	0.55 ± 0.23	5.4	0	1.94	2.3
$\tau^- \to e^+ \pi^- \pi^-$	6.56	0.37 ± 0.18	5.4	0	2.10	2.0
$\tau^- \rightarrow \mu^- K^+ K^-$	2.85	0.51 ± 0.18	5.9	0	1.97	4.4
$\tau^- \rightarrow \mu^+ K^- K^-$	2.98	0.25 ± 0.13	5.9	0	2.21	4.7
$\tau^- \to e^- K^+ K^-$	4.29	0.17 ± 0.10	6.0	0	2.28	3.4
$\tau^- \to e^+ K^- K^-$	4.64	0.06 ± 0.06	6.0	0	2.38	3.3
$ au^- ightarrow \mu^- \pi^+ K^-$	2.72	0.72 ± 0.27	5.6	1	<mark>3.</mark> 65	8.6
$\tau^- \to e^- \pi^+ K^-$	3.97	0.18 ± 0.13	5.7	0	2.27	3.7
$\tau^- \to \mu^- K^+ \pi^-$	2.62	0.64 ± 0.23	5.6	0	1.86	4.5
$\tau^- \to e^- K^+ \pi^-$	4.07	0.55 ± 0.31	5.7	0	1.97	3.1
$\tau^- ightarrow \mu^+ K^- \pi^-$	2.55	0.56 ± 0.21	5.6	0	1.93	4.8
$\tau^- \to e^+ K^- \pi^-$	4.00	$\textbf{0.46} \pm \textbf{0.21}$	5.7	0	2.02	3.2

- Essentially background-free analysis; 1 event observed in each of two modes:
- Branching fraction limits at level of ~several x10⁻⁸

May 22, 2013

Tau physics at e+e- colliders

FPCP2013

LFV & BNV in $\tau \rightarrow \Lambda h$

Belle Preliminary K. Hayasaka, TAU2012

Similar methodology used in a recent search for LFV τ decays with baryons:

- require 3 signal-size hadrons including an identified proton
- require displaced $p\pi$ vertex and m(p\pi) consistent with Λ
- veto protons on tag side to suppress non-tau baryonic backgrounds

No events observed in any signal channel:

$$\begin{array}{l} \mathsf{Br}(\tau^{-} \to \overline{\Lambda} \pi^{-}) < 2.8 \times 10^{-8} \\ \mathsf{Br}(\tau^{-} \to \overline{\Lambda} \mathrm{K}^{-}) < 3.1 \times 10^{-8} \\ \mathsf{Br}(\tau^{-} \to \Lambda \pi^{-}) < 3.0 \times 10^{-8} \\ \mathsf{Br}(\tau^{-} \to \Lambda \mathrm{K}^{-}) < 4.2 \times 10^{-8} \\ \mathsf{Br}(\tau^{-} \to \Lambda \mathrm{K}^{-}) < 4.2 \times 10^{-8} \\ \mathsf{(preliminary)} \end{array}$$

FPCP2013

LFV summary

• **Belle** has now updated all but $\tau \rightarrow e^{-\gamma}$ to full data samples

• Older **BABAR** results mostly based on less than full data sample

 τ physics remains a very active area of research at the B factories

 Large data samples and clean analysis environment enable precise measurements of rare SM processes and sensitive probing for possible new physics effects

Recent measurements of:

- High-multiplicity and Cabibbo-suppressed processes
- Searches for CP violation
- LFV in neutrino-less τ decays