

B decays with significant missing energy

(on behalf of Belle Collaboration)

Youngmin Yook

Yonsei University Seoul, Korea yookym@gmail.com

Introduction

- Rare *B*-decays with neutrinos.
- Theoretically clean.
- Small Standard Model branching fraction.
- Provides a good place to test the Standard Model .
- All results are from blind analysis.

Hadronic Tagging Method

Complete tagging of a B in $Y(4S) \rightarrow B\overline{B}$

 $\Rightarrow B.F.(\Upsilon(4S) \rightarrow B\overline{B}) \sim 96\%$

→ Constrain the charge, flavor, & (E, \vec{p}) of B_{sig}

- → Results in very high-purity (but with low efficiency)
- → Good continuum (e^+e^- → u,d,s,c) suppression

 \rightarrow Reconstructs rare processes with neutrinos

<Varibles on B_{tag} obtained by Hadronic Tagging> $M_{bc} \equiv \sqrt{E_{beam}^2 - p_B^2}$: Beam constrained mass $\Delta E \equiv E_{beam} - E_B$: Energy difference in B_{tag} and E_{beam}

> (center of mass frame) (m_{ES} : BABAR's equivalent to M_{bc} at Belle)

$$\begin{array}{ccc} Today...\\ B \to h^{(*)}\nu\bar{\nu} & \swarrow & \swarrow\\ B^0 \to invisible(\gamma) & \swarrow\\ B^+ \to \ell^+\nu_\ell & \swarrow\end{array}$$

4/6 analyses use hadronic tagging method.

 $h^{(*)} = K, K^*, \pi, \rho, \phi$ at Belle. $h^{(*)} = K, K^*; J/\Psi \rightarrow \nu \overline{\nu}, \Psi(2S) \rightarrow \nu \overline{\nu}$ at BABAR.

Submitted to PRD(RC). arXiv:1303.3719[hep-ex].

 $\overline{B.F_{SM}(B^+ \to K^{*+}\nu\bar{\nu})} = (6.8 \pm 2.0) \times 10^{-6}$ $B.F_{SM}(B^+ \to K^+\nu\bar{\nu}) = (4.4 \pm 1.5) \times 10^{-6}$

• FCNC in the SM: EW Penguin/Box.

W. Altmannshofer, A. J. Buras, D. M. Straub, and M. Wick, JHEP 0904, 022 (2009).

- Branching fraction for $b \rightarrow d\nu\bar{\nu}$ further suppressed by a factor of $|V_{td}/V_{ts}|^2$
- $B^0 \rightarrow \phi \nu \bar{\nu}$: Decays via a not yet to observed penguin \rightarrow much lower branching fraction.
- An interesting place to test physics beyond SM
 - Branching fraction deviation \rightarrow Predictions of massive particles w/ additional loop contribution?
 - Modification of q^2 distribution ($q \equiv$ Energy-momentum transfer from b to $\nu \bar{\nu}$). \rightarrow LDM ?

B → K + charmonium process provides an window to search for charmonium → $\nu \bar{\nu}$.

< Feynmann diagrams for $b \rightarrow s v \bar{v}$ transition in Standard Model >

• Possible branching fraction enhancement expected according to various New Physics Scenarios.

Both Belle and BABAR use hadronic tagging.

< SUSY decays of $c\bar{c}$ to a pair of goldstinos via *c*-squark and Z^0 >

Y. Yook (Yonsei Univ.), B decays with significant missing energy, FPCP 2013

V

 $O_{\rm NB} \equiv$ A Neural Network output interpret as Bayesian probability on B_{tag} .

Backup: Details on O

Reconstruct h(*) w/ right charge to B_{tag} $K_s^0 \rightarrow \pi^+\pi^-, \pi^0 \rightarrow \gamma\gamma, K^{*0} \rightarrow K\pi, K^{*+} \rightarrow K_s^0\pi^+/\pi^0K^+, \rho^0 \rightarrow \pi^+\pi^-, \rho^+ \rightarrow \pi^+\pi^0$ No additional charged tracks or π^0 Reduce BG with a particle missing along the beam pipe: $cos\theta_{miss} \equiv polar \ angle \ of \ missing \ momentum \ in \ CM \ frame$ $(-0.86\sim0.95)$ 1.6 GeV/c < $p^*(h \ momentum \ in \ B_{sig} \ rest \ frame) < 2.5 \ GeV/c$ Lower-bound rejects BG from $b \rightarrow c$ charm decays, Upper-bound rejects BG from 2-body B decays(e.g. $B \rightarrow K^*\gamma$).

> Backup: Precise Description Backup: Validation

$$E_{ECL} \equiv E_{TOTAL} - E_{B_{tag}} - E_{signal-particles}$$

Remaining energy in the ECL not associated with B_{tag} or particles used to reconstruct the signal side.
Well reconstructed signal events peak near 0.

A powerful variable often used with analyses with v_ℓ 's.

Signal Extraction by an extended binned maximum likelihood fit in E_{ECL} (0-1.2 GeV).

arXiv:1303.3719[hep-ex].

<Signal MC distribution in *E*_{*ECL*} window>

$B \rightarrow h^{(*)} \nu \bar{\nu}$: Signal Extraction

Systematic uncertainty dominated by the statistical uncertainty of BG model due to stringent signal selection.

$BF = N_{sig} / (N_{B\overline{B}} \cdot \epsilon_{sig})$ $N_{sig}: \text{ signal yield}$ $N_{B\overline{B}}: \# \text{ of BB pairs}$ $\epsilon: \text{ signal selection efficiency}$	$B \to h \nu \bar{\nu}$	Significance	B.F. Upper Limit(× 10^{-5})	
	<i>K</i> ⁺	2.0σ	5.5	Backup: pub. table
	K_S^0	0.7σ	9.7	Backup: plots for all modes
	<i>K</i> *+		4.0	
	<i>K</i> * ⁰		5.5	
	π^+	2.6σ	9.8	
	π^0	1.9σ	6.9	
	$oldsymbol{ ho}^+$	1.7σ	21.3	
	$ ho^0$	0.4σ	20.8	
	${oldsymbol{\phi}}$	0.5σ	12.7	

the most stringent up to date.

Submitted to PRD(RC). arXiv:1303.3719[hep-ex].

Y. Yook (Yonsei Univ.), B decays with significant missing energy, FPCP 2013

 $B \to K^{(*)} \nu \bar{\nu}: \mathbf{Method} \\ +B \to K^*(c\bar{c}): J/\Psi \to \nu \bar{\nu}, \Psi(2S) \to \nu \bar{\nu}$

 $s_B \equiv q^2/m_B^2$: weighted mass of the $\nu \bar{\nu}$ system. For non-charmonium modes: $0 < s_B < 0.3$ (Corresponds to $p_{K^{(*)}}^B > 1.8(1.7) \text{GeV}/c$) For charmonium modes: identified in s_B equivalent to the mass of J/Ψ or $\Psi(2S)$.

471M **BB**-pairs

B_{tag}

 π/K up to 5.

 \overline{B}_{sig}

 $B_{tag} \rightarrow DX^-$ where X^-

refers to a combination of

Hadronic

tagging from

high purity

 $M_{bc}, \Delta E$

exclusive b→c channels with

$$\mathcal{B}_{i} = \frac{N_{i}^{\text{obs}} - (N_{i}^{\text{peak}} + N_{i}^{\text{comb}})}{\varepsilon_{i}^{\text{sig}} N_{B\overline{B}}} \qquad (i \equiv \text{each channel})$$

 N_i^{peak} : peaking BG from correct B_{tag} N_i^{cont} : combinatorial BG (extrapolated from M_{bc} sideband data) Major fraction of peaking BG from $D^{(*)}\ell\nu$ process with a lepton missing.

$B \to K^{(*)} \nu \bar{\nu}: \underset{+B \to K^{*}(c\bar{c}): J/\Psi \to \nu \bar{\nu}, \Psi(2S) \to \nu \bar{\nu}}{\text{Signal Extraction}}$

Backup: systematics Backup: descriptive table

<i>K</i> *+	<i>K</i> * ⁰	K^+	K^0
< 11.6	< 9.3	0.4-3.7	< 8.1
< '	7.9	0.2-	-3.2

<U.L. of Branching Fraction for $B \to K^{(*)} \nu \bar{\nu} imes 10^5$ >

For the
$$J/\Psi \rightarrow \nu \bar{\nu}, \Psi(2S) \rightarrow \nu \bar{\nu}$$
.
 $B.F.(J/\Psi \rightarrow \nu \bar{\nu}) < 3.9 \times 10^{-3}$
 $B.F.(\Psi(2S) \rightarrow \nu \bar{\nu}) < 15.5 \times 10^{-3}$

Backup: fit plots for charmonium Backup: result table in publication

@ 90% C.L.

$B \rightarrow h^{(*)} \nu \bar{\nu}$: Summary

 $B \rightarrow h^{(*)} \nu \bar{\nu}$: Summary

Parameters of Wilson coefficients in consistency with the Standard Model.

Belle: PRD 86, 032002 (2012).

BABAR: PRD 86, 051105(R) (2012).

$B^0 \rightarrow invisible$: Motivation

G. Buchalla, and A.J. Buras, Nuclear Physics B 400(1-3), 225 - 239 (1993))

$$\mathcal{B}(B^0 \to \nu \overline{\nu}) = \tau_{B^0} \frac{G_F^2}{\pi} \left(\frac{\alpha}{4\pi \sin^2 \Theta_W}\right)^2 F_{B^0}^2 m_\nu^2 m_{B^0} \sqrt{1 - 4m_\nu^2 / m_{B^0}^2} |V_{tb}^* V_{td}|^2 Y^2(x_t)$$

<The SM Feynmann diagrams and branching fraction of $B \rightarrow invisible >$

- *B* decays with no remaining product in the detector (ν or hyphothetical).
- Low m_{ν} + Helicity suppression (SM) \rightarrow Nearly invisible signature within the SM.
- Measurements of $B^0 \rightarrow invisible$? \rightarrow A clear signature of New Physics!
 - NP scenario branching fraction enhancement, existence of hypothetical particles.
 - (e.g. $B^0 \rightarrow \bar{\nu} \tilde{\chi}_1^0$ from R-parity violating SUSY with $10^{-7} < B.F. < 10^{-6}$). T. Adams et al. (NuTeV Collab.), PRL 87, 041801 (2001). A. Dedes, H. Dreiner, and P. Richardson, PRD 65, 015001 (2002).
- Previous Result: $BF(B^0 \rightarrow invisible) < 22 \times 10^{-5}, BF(B^0 \rightarrow (+\gamma)) < 4.7 \times 10^{-5} @ 90\% C.L.$

T. Adams et al. (NuTeV Collab.), PRL 87, 041801 (2001). A. Dedes, H. Dreiner, and P. Richardson, PRD 65, 015001 (2002). CThe R-parity violating Feynmann diagrams of $B \rightarrow invisible > 1000$

Y. Yook (Yonsei Univ.), B decays with significant missing energy at Belle, FPCP 2013

Y. Yook (Yonsei Univ.), B decays with significant missing energy, FPCP 2013

$B^0 \rightarrow invisible$: Signal Extraction

- 2-D PDF Construction in... ۲
 - E_{ECL} : Discrete histogram function (Energy threshold within 0 0.05 GeV)
 - $cos\theta_B$: Legendre Polynomials
- Combined PDF: $P(E_{ECL}, cos\theta_R) = P(E_{ECL}) \times P(cos\theta_R)$

C. –L. Hsu, P. Chang, et al. (Belle collab.), PRD 86, 032002 (2012).

- * Syst. uncertainty of signal efficiency dominated by B_{tag} uncertainty efficiency.
- * Syst. uncertainty on signal yield are due to MC statistic.

 $\mathcal{B} = N_{\rm sig} / (\epsilon \cdot N_{B\bar{B}})$

 ϵ : signal selection efficiency

 N_{sig} : signal yield $N_{B\bar{B}}$: # of BB pairs

Y. Yook (Yonsei Univ.), B decays with significant missing energy, FPCP 2013

$B^0 \rightarrow invisible (+\gamma)$: Signal Extraction

 $B^0 \rightarrow \text{invisible} + \gamma$

Source	$B^0 \rightarrow \text{invisible}$	$B^0 \rightarrow \text{invisible} + \gamma$
Normalization errors		
B-counting	0.6%	0.6%
Efficiency errors		
Tagging efficiency	3.5%	3.5%
$m_D(\Delta m)$ selection	1%	1.3%
Preselection	3%	2.4%
Neural network	6.1%	8.2%
Single photon		1.8%
Total	7.7%	9.5%
Yield errors (events)		
Background parameter	15.8	6.5
Signal parameter	2.0	1.2
Fit technique		1.0
E _{extra} shape	0.1	1.8
Total	15.9	6.9

* Dominant systematic uncertainty from data/MC discrepancy in NN variables & parameterization of BG E_{extra} PDF.

Backup: Systematics

semi-leptonic tagging(471M BB), the best limit so far.

B. $F(B^0 \rightarrow invisible) < 2.4 \times 10^{-5}$ B. $F(B^0 \rightarrow invisible + \gamma) < 1.7 \times 10^{-5} E_{\gamma} > 1.2 \text{GeV}$ @ 90% C. L.

 113 ± 12

J.P. Lees et al. (The BABAR collab.), PRD 86, 051105(R) (2012).

Y. Yook (Yonsei Univ.), B decays with significant missing energy, FPCP 2013

 -3.1 ± 5.2

$$B^{+} \rightarrow \ell^{+} \nu_{\ell}$$

$$\ell = e, \mu$$

$B^+ \rightarrow \ell^+ \nu_\ell$: Motivation

$$\frac{b}{b} + \frac{b}{b} + \frac{b$$

Result presented today is... **An update using full** $\Upsilon(4S)$ **data (711** $fb^{-1}/772M$) / Hadronic tagging

$B^+ \rightarrow \ell^+ \nu_{\ell}$: Method $\ell = e, \mu$

<Signal Enhanced plot of p_{ℓ}^{B} for $B \rightarrow \mu \nu$ search>

0.8

2

 $\frac{1}{2.2} p_1^B (GeV/c)^{2.6}$

2.8

$B^+ \rightarrow \ell^+ \nu_{\ell}$: Signal Extraction $\ell = e, \mu$

$$B.F. = \frac{N_{obs} - N_{bkg}}{N_{B\bar{B}} * \epsilon_{sig}}$$

Counting data yield in **unblinded** signal region. No signal events observed in signal p_{ℓ}^{B} window. Branching fraction Upper Limit calculated according to Feldman-Cousins method. G.J. Feldman and R.D. Cousins, PRD57, 3873 (1998).

- * Uncertainties on N_{bkg} from
- 1. Data statistical error in p_{ℓ}^{B} sideband
- 2. Branching Fraction uncertainties of BG
- 3. Fit Parameters

* Dominant uncertainty of ϵ_{sig} is due to p_{ℓ}^{B} shape uncertainty. Backup: Systematic

> A new update with hadronic tagging method. **B**. **F**. $(B^+ \rightarrow e^+ \nu_e) < 3.5 \times 10^{-6}$ **B**. **F**. $(B^+ \rightarrow \mu^+ \nu_e) < 2.5 \times 10^{-6}$ @ 90% C. L.

> > Publication preparation underway.

<Summary of N_{bkg} , ϵ_{sig} , Observed data yield in signal region, B.F. upper limit>

 ν_h : Heavy Neutrinos

Belle: PRD 87, 071102(R) (2013).

$B \to (X) \ell \nu_h$: Motivation

 $\nu_h \equiv$ Heavy Neutrinos

- $m_{\nu} > 0$ from experimental data while the SM assumes 0 mass.
- Heavy neutrinos (v_h) in many models beyond the SM
 - νMSM: addition of 3 RH neutral leptons. ^{T. Asaka, S. Blanchet and M. Shaposhnikov, Phys. Lett. B 631, 151 (2005).} T. Asaka and M. Shaposhnikov, Phys. Lett. B 620, 17 (2005).
 - Neutrino Oscillation, Dark Matter, Baryogenesis("w/ larger mass sterile particles") explainable
 - Also expected from SUSY, GUT, models with exotic Higgs representations.

Properties of $\nu_h \rightarrow$ Sterile

- Lepton: no strong interaction.
- Right-handedness: no weak interaction.
- Neutral: no EM interaction.

How it interacts?

- Only by mixing with a left-handed neutrino by a unitarity transformation.
- $v_{\alpha} = \sum_{i} U_{\alpha i} v_{i}$ (α =flavor eigenstates, *i*=mass eigenstates) We define... $U_{\alpha} \equiv U_{\alpha v_{h}}$

Search for $B \to (X)\ell_2^+ \nu_h$ where $\nu_h \to \ell_1^\pm \pi^\mp$ (Dirac or Majorana) **B** $0.5 \text{ GeV}/c^2 < M_{\nu_h} < 5 \text{ GeV}/c^2$

<Heavy neutral lepton production and decay diagram>

$B \rightarrow (X) \ell \nu_{heavy}$: Method

$$(c\tau > 20m \text{ for } M_{\nu_h} = 1 \text{GeV}/c^2, U_{\alpha}^2 < 10^{-4})$$

- Combinatorial background.
 - Daughter track originating from IP \rightarrow Distance between the closest associated hit in SVD/CDC to vertex of ν_h can distinguish the background from signal.

$B \to (X) \ell v_{heavy}$: Signal extraction

 ϵ : reconstruction efficiency.

Y. Yook (Yonsei Univ.), B decays with significant missing energy at Belle, FPCP 2013

2013-05-24 **25/27**

 $B \to (X) \ell v_{heavy}$: $|U_{\alpha}|^2$ upper limits

- Upper limits on $v_h v_\ell$ mixing $(|U_\ell|)$ in the mass range $0.5 < M_{v_h} < 5 \text{ GeV}/c^2$ obtained. (Maximum sensitivity near $2 \text{ GeV}/c^2$) U.L. calculated according to a method described in G.J. Feldman and R.D. Cousins, PRD57, 3873 (1998).
- Corresponding branching fraction U.L.
 - $BF(B \to (X)\ell\nu_h) \times BF(\nu_h \to \ell\pi^+) < 7.2 \times 10^{-7}$

D.Liventsev, et al. (Belle collaboration), PRD 87, 071102(R) (2013).

Conclusion

 $B \to h^{(*)} \nu \overline{\nu}$ $B^{0} \to invisible(\gamma)$ $B^{+} \to \ell^{+} \nu_{\ell}$ $B \to (X) \ell \nu_{heavy}$

- Rare decay searches as a probe for New Physics Scenario was carried out in Belle and Babar collaboration.
 - Many updates on U.L. of branching fraction using hadronic tagging method.
 - U.L. on mixing of $\nu_h \nu_\ell$ was set in the mass range of $0.5 5.0 \text{ GeV}/c^2$.
 - The an update with an order more stringent B.F. upper limit in $B^0 \rightarrow invisible(\gamma)$ from semi-leptonic tagging from BABAR.
- No evidence of signal, consistent with the Standard Model.
- Anticipating for the high sensitivity of Belle-II !

Youngmin Yook (Yonsei Univ.) yookym@gmail.com

Hadronic Tagging Method Back to p.6

Modified hadronic tagging with Neurobayes algorithm?

Network output linearly related to the Bayesian probability of articulate reconstruction of a candidate.

M. Feindt, F. Keller, M. Kreps, T. Kuhr, S. Neubauer, D. Zander, A, Zupanc, Nucl.Instrum.Meth.A654:432-440,2011

Hadronic Tagging Method Back to p.6

• Modified hadronic tagging with Neurobayes algorithm?

Higher efficiency with addition of B/D reconstruction modes. Purity/Efficiency control with Neural-network output (NB_{out}).

 $h^{(*)} = K, K^*, \pi, \rho, \phi$ at Belle. $h^{(*)} = K, K^*, J/\Psi \rightarrow \nu \overline{\nu}, \Psi(2S) \rightarrow \nu \overline{\nu}$ at BABAR.

$B \rightarrow h^{(*)} \nu \overline{\nu}: \underset{h^{(*)} = K^+, K^0_s, K^{*+}, K^{*0}, \pi^+, \pi^0, \rho^+, \rho^0, \phi}{\text{Strategy}}$

• B-tag calibraton by Mbc fit.

Hnunu: event selection

Back to p.6

Cut (short name)	Description			
BTagChargeCombination	B_{Tag} candidate with the corresponding charge combination (neutral-neutral, positive-negative, negative-positive)			
$M_{\rm bc} > 5.27{\rm GeV}$	lower cut on $M_{\rm bc}$ of the $B_{\rm Tag}$ candidate			
$-0.08 \mathrm{GeV}$ $<\Delta E$	cut on ΔE of the B_{Tag} candidate			
$<$ 0.06 ${ m GeV}$				
${\tt BTagNBout} > 0.02$	lower cut on the NB_{out} of the B_{Tag} candidate			
NRemainingPiO = 0	no additional Pi^0 candidate should be left, standard π^0 cuts applied			
${\tt NRemainingTracksAll} =$	no additional track should be left, no quality cuts on			
0	the veto tracks applied			
$-0.86 < cos heta_{mis} < 0.95$	the missing-momentum should not point into the			
	beam-pipe			
$E_{ECL} < 1.5{ m GeV}$	upper cut on the extra energy in the calorimeter			
$ec{ ho}^* > 1.6{ m GeV}$	lower cut on the momentum in B_{Sig} rest frame to			
	reduce background from charm decays			
$ec{ ho}^* < 2.5{ m GeV}$	upper cut on the momentum in B_{Sig} rest frame to reduce background from two-body B-decays			

$B \rightarrow h^{(*)} \nu \bar{\nu}$: Validation

 $h^{(*)} = K^+, K^0_s, K^{*+}, K^{*0}, \pi^+, \pi^0, \rho^+, \rho^0, \phi$

Back to p.6

 E_{ECL} Comparison of data/MC in the M_{bc} sideband of $M_{bc} < 5.27 \text{ GeV}/c^2$

 M_{bc} Comparison of data/MC in the E_{ECL} sideband of $E_{ECL} > 0.45$ GeV

Events / 0.1 GeV 00005 ≥ 3000 o 3500 3000 2500 3000 2000 1500 2000 1000F 1000 8.0 1.0 E_{ECL} [GeV] 1.0 E_{ECL} [GeV] 0.5 0.5

Charged track / π^0 rejection efficiency consistency check with data/MC using $B \rightarrow D^{(*)} \ell \nu$ control sample.

Back to p.7

• Fit to E_ECL for all h(*) modes

Submitted to PRD(RC). arXiv:1303.3719[hep-ex].

Y. Yook (Yonsei Univ.), B decays with significant missing energy, FPCP 2013

 $B \rightarrow h^{(*)} \nu \overline{\nu}$: Systematics

Back to p.7

Channel	$K^+ \nu \bar{\nu}$	$K^0_s \nu \bar{\nu}$	$K^{*+}\nu\bar{\nu}$	$K^{*0}\nu\bar{\nu}$	$\pi^+ u ar{ u}$	$\pi^0 \nu \bar{\nu}$	$ ho^+ u ar{ u}$	$ ho^0 u \overline{ u}$	$\phi v \bar{v}$
Signal yield [events]									
Background model	2.1	0.9	1.5	0.5	0.9	0.4	4.0	0.4	0.5
Fit bias	_	-	0.2	0.6	-	0.4	-	0.1	0.6
Signal normalization [%]									
Track and π^0 rejection	4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4	4.4
B_{tag} correction	4.2	4.5	4.2	4.5	4.2	4.5	4.2	4.5	4.5
Signal MC statistics	1.2	3.5	3.7	2.8	1.5	2.1	2.3	3.3	2.6
Track, π^0 and K^0_S reconstruction efficiency	0.3	2.3	4.1	0.4	0.4	4.0	4.2	0.7	1.4
Particle identification	2.0	4.0	2.0	4.0	2.0	-	2.0	4.0	4.0
$N_{B\bar{B}}$	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4
Form factors	2.0	5.4	3.8	6.4	1.9	1.6	2.9	4.5	7.5

$B \rightarrow h^{(*)} \nu \overline{\nu}$: Result

Back to p.7

Mode	$N_{ m tot}$	$N_{ m sig}$	Significance	$\epsilon, 10^{-4}$	Upper limit
$B^+\to K^+\nu\bar\nu$	43	$13.3^{+7.4}_{-6.6}(\mathrm{stat})\pm2.3(\mathrm{syst})$	2.0σ	5.68	$< 5.5 \times 10^{-5}$
$B^0 \to K^0_s \nu \bar{\nu}$	4	$1.8^{+3.3}_{-2.4}({ m stat})\pm 1.0({ m syst})$	0.7σ	0.84	$<9.7\times10^{-5}$
$B^+\to K^{*+}\nu\bar\nu$	21	$-1.7^{+1.7}_{-1.1}(\mathrm{stat})\pm1.5(\mathrm{syst})$	-	1.47	$< 4.0 imes 10^{-5}$
$B^{0} \to K^{*0} \nu \bar{\nu}$	10	$-2.3^{+10.2}_{-3.5}(\mathrm{stat})\pm0.9(\mathrm{syst})$	_	1.44	$< 5.5 \times 10^{-5}$
$B^+ \to \pi^+ \nu \bar{\nu}$	107	$15.2^{+7.1}_{-6.2}({ m stat})\pm 1.4({ m syst})$	2.6σ	3.39	$<9.8\times10^{-5}$
$B^0 \to \pi^0 \nu \bar{\nu}$	6	$3.5^{+2.6}_{-1.9}(\mathrm{stat})\pm0.6(\mathrm{syst})$	1.9σ	1.66	$< 6.9 imes 10^{-5}$
$B^+ \to \rho^+ \nu \bar{\nu}$	90	$11.3^{+6.3}_{-5.4}(\mathrm{stat})\pm4.1(\mathrm{syst})$	1.7σ	1.35	$<21.3\times10^{-5}$
$B^0 \to \rho^0 \nu \bar{\nu}$	31	$1.6^{+5.0}_{-4.1}({ m stat})\pm 0.4({ m syst})$	0.4σ	0.64	$<20.8\times10^{-5}$
$B^0 o \phi \nu \bar{\nu}$	3	$1.4^{+2.9}_{-0.9}({ m stat})\pm 0.8({ m syst})$	0.5σ	0.58	$<12.7\times10^{-5}$

Submitted to PRD(RC). arXiv:1303.3719[hep-ex].

Y. Yook (Yonsei Univ.), B decays with significant missing energy, FPCP 2013

A state

 $cos\theta_T$: B-tag thrust vs all other particles $cos \angle (beam, \vec{p}_{missing})$ $p_{B_{tag}}, 2^{nd}-0^{th}$ FW moment

$$\rightarrow \mathcal{L}_B \equiv \frac{\prod_j \mathcal{P}_B(x_j)}{\prod_j \mathcal{P}_B(x_j) + \prod_j \mathcal{P}_q(x_j)} > 53\%$$

Back to p.8

LHR cut of "mostly" shape variables.

$$r_{\rm clus} < 15^{\circ}$$
, where $r_{\rm clus} \equiv \sqrt{(\Delta\theta)^2 + \frac{2}{3}(Q_K \cdot \Delta\phi - 8^{\circ})^2}$

Decision of Signal fragments in comparison to IP-Signal momentum

Channel	K^+	K^0	$[K^+\pi^0]$	$[K_{S}^{0}\pi^{+}]$	$[K^+\pi^-]$	$[K_S^0 \pi^0]$
E_i [GeV]	0.11	0.28	0.18	0.29	0.31	0.33

E_extra conditions for each channel

Submitted to PRD(RC). arXiv:1303.7465[hep-ex].

Y. Yook (Yonsei Univ.), B decays with significant missing energy, FPCP 2013

$B \rightarrow h^{(*)} \nu \overline{\nu}$: Systematics

Source	K^+	$[K^+\pi^0]$	$[K^0_S\pi^+]$	K^0	$[K^+\pi^-]$	$[K_S^0\pi^0]$
$B \to K^{(*)} \nu \overline{\nu}$						
N_i^{peak} \mathcal{B} 's	2.8	2.8	2.8	2.8	2.8	2.8
s_B resolution	3.6	3.6	3.6	3.6	3.6	3.6
Total N_i^{peak} syst.	6.8	8.9	8.8	9.7	10.0	10.9
Total N_i^{comb} syst.	2.3	2.3	2.3	6.0	6.0	6.0
Total $\varepsilon_i^{\text{sig}}$ syst.	6.7	8.8	8.8	11.4	11.7	12.4
		J/ψ –	$+ \nu \overline{\nu}$			
$N_i^{\text{peak}} \mathcal{B}$'s	3.5	3.5	3.5	3.5	3.5	3.5
$m_{\nu\overline{\nu}}$ resolution	1.1	2.1	0.4	0.7	0.3	1.3
Total N_i^{peak} syst.	6.2	8.6	8.4	9.3	9.6	10.5
Total N_i^{comb} syst.	2.3	2.3	2.3	6.0	6.0	6.0
Total $\varepsilon_i^{\text{sig}}$ syst.	5.8	8.3	8.0	10.8	11.1	11.9
$\psi(2S) \to \nu \overline{\nu}$						
N_i^{peak} \mathcal{B} 's	2.8	2.8	2.8	2.8	2.8	2.8
$m_{\nu\overline{\nu}}$ resolution	0.8	2.4	1.0	0.9	1.8	3.1
Total N_i^{peak} syst.	5.8	8.5	8.1	9.1	9.5	10.7
Total N_i^{comb} syst.	2.3	2.3	2.3	6.0	6.0	6.0
Total $\varepsilon_i^{\rm sig}$ syst.	5.8	8.4	8.1	10.9	11.2	12.2

<Mode by mode>

Source	K^+	$[K^+\pi^0]$	$[K_{S}^{0}\pi^{+}]$	K^0	$[K^+\pi^-]$	$[K^0_S\pi^0]$
$\varepsilon_i^{ m sig}$ normalization	3.5	3.5	3.5	8.9	8.9	8.9
$N_i^{\rm bkg}$ normalization	2.3	2.3	2.3	6.0	6.0	6.0
K_s^0 reconstruction	-	-	1.4	1.4	—	1.4
K^* reconstruction	-	2.8	2.8	-	2.8	2.8
π^0 reconstruction	-	3.0	—	-	-	3.0
$E_{\mathbf{extra}}$	4.5	6.0	6.5	6.0	6.0	6.5

Back to p.9

<Common factors>

$B \rightarrow h^{(*)} \nu \overline{\nu}$: Result

Back to p.9

	$B^+ ightarrow [K^+ \pi^0] \nu \overline{ u}$	$B^+ \to [K^0_s \pi^+] \nu \overline{\nu}$	$B^0 \to [K^+\pi^-] \nu \overline{\nu}$	$B^0 \to [K^0_S \pi^0] \nu \overline{\nu}$	
N_i^{peak}	$1.2\pm0.4\pm0.1$	$1.3\pm0.4\pm0.1$	$5.0\pm0.8\pm0.5$	$0.2\pm0.2\pm0.0$	
N_i^{comb}	$1.1\pm0.4\pm0.0$	$0.8\pm0.3\pm0.0$	$2.0 \pm 0.5 \pm 0.1$	$0.5\pm0.3\pm0.0$	
N_i^{bkg}	$2.3\pm0.5\pm0.1$	$2.0 \pm 0.5 \pm 0.1$	$7.0 \pm 0.9 \pm 0.5$	$0.7\pm0.3\pm0.0$	
$\varepsilon_i^{ m sig} (\times 10^{-5})$	$4.9\pm0.2\pm0.4$	$6.0\pm0.2\pm0.5$	$12.2 \pm 0.3 \pm 1.4$	$1.2\pm0.1\pm0.1$	
N_i^{obs}	3	3	7	2	
Limit	$<19.4\times10^{-5}$	$< 17.0 \times 10^{-5}$	$< 8.9 imes 10^{-5}$	$< 86 imes 10^{-5}$	
$\mathcal{B}(B^{+/0} \to K^{*+/0} \nu \overline{\nu})$	$(3.3^{+6.2+1.7}_{-3.6-1.3}) \times 10^{-5}$		$(2.0^{+5.2}_{-4.3})^{+2.2}_{-1.3}$	$\binom{0}{7} \times 10^{-5}$	
Limit	$< 11.6 imes 10^{-5}$		$< 9.3 \times$	10 ⁻⁵	
$\mathcal{B}(B \to K^* \nu \overline{\nu})$	$(2.7^{+3.8}_{-2.9}^{+1.2}_{-1.0}) \times 10^{-5}$				
Limit	$< 7.9 \times 10^{-5}$				

	$B^+ \to K^+ \nu \overline{\nu}$	$B^0 \to K^0 \nu \overline{\nu}$				
N_i^{peak}	$1.8\pm0.4\pm0.1$	$2.0\pm0.5\pm0.2$				
N_i^{comb}	$1.1\pm0.4\pm0.0$	$0.9\pm0.4\pm0.1$				
$N_i^{ m bkg}$	$2.9 \pm 0.6 \pm 0.1$	$2.9\pm0.6\pm0.2$				
$\varepsilon_i^{ m sig}$ (×10 ⁻⁵)	$43.8 \pm 0.7 \pm 3.0$	$10.3\pm0.2\pm1.2$				
N_i^{obs}	6	3				
\mathcal{B}_i	$(1.5^{+1.7}_{-0.8}{}^{+0.4}_{-0.2}) imes 10^{-5}$	$(0.14^{+6.0}_{-1.9}^{+1.7}) \times 10^{-5}$				
Limits	$(> 0.4, < 3.7) \times 10^{-5}$	$< 8.1 imes 10^{-5}$				
$\mathcal{B}(B \to K \nu \overline{\nu})$	$(1.4^{+1.4}_{-0.9}) imes 10^{-5}$					
Limits	(> 0.2, < 3)	$(>0.2, < 3.2) \times 10^{-5}$				

- Back to p.9
- Data
 Comb. BG predicted by MC
 M_ES peaking
 - --- Signal

After all signal criteria applied.

Back to p.9

	DBER
(
	- A

			J/ψ –	$\rightarrow \nu \overline{\nu}$		
Channel	K^+	K^0	$K^{*+} \to K^+ \pi^0$	$K^{*+} \to K^0_S \pi^+$	$K^{*0} \to K^+ \pi^-$	$K^{*0} \to K^0_S \pi^0$
N_i^{peak}	$0.4\pm0.2\pm0.0$	$0.7\pm0.3\pm0.1$	$0.8\pm0.3\pm0.1$	$0.4\pm0.2\pm0.0$	$2.6\pm0.5\pm0.3$	$0.6\pm0.2\pm0.1$
$N_i^{\rm bkg}$	$0.5\pm0.2\pm0.0$	$0.7\pm0.3\pm0.1$	$0.8\pm0.3\pm0.1$	$0.8\pm0.3\pm0.0$	$2.8\pm0.5\pm0.3$	$0.6\pm0.2\pm0.1$
$\varepsilon_i^{ m sig} (\times 10^{-8})$	$95.3 \pm 4.4 \pm 5.5$	$19.3\pm1.0\pm2.1$	$20.9\pm1.5\pm1.7$	$12.4\pm0.8\pm1.0$	$36.2\pm1.9\pm4.0$	$1.8\pm0.2\pm0.2$
$N_i^{\rm obs}$	1	0	1	0	0	1
$\mathcal{B}(J/\psi \to \nu \overline{\nu})$			$(0.2^{+2.7}_{-0.9})^{+0}_{-0}$	$^{(5)}_{(4)} \times 10^{-3}$		
Limit		$< 3.9 imes 10^{-3}$				
			$\psi(2S)$	$\rightarrow \nu \overline{\nu}$		
Channel	K^+	K^0	$\psi(2S)$ $K^{*+} \to K^+ \pi^0$		$K^{*0} \rightarrow K^+ \pi^-$	$K^{*0} \rightarrow K^0_S \pi^0$
$\frac{\text{Channel}}{N_i^{\text{peak}}}$	K^+ $1.4 \pm 0.4 \pm 0.1$	K^0 $0.6 \pm 0.3 \pm 0.1$	$\psi(2S)$ $K^{*+} \rightarrow K^+ \pi^0$ $1.4 \pm 0.4 \pm 0.1$		$K^{*0} \to K^+ \pi^-$ $3.5 \pm 0.7 \pm 0.3$	$K^{*0} \to K_S^0 \pi^0$ $0.6 \pm 0.2 \pm 0.1$
$\frac{\text{Channel}}{N_i^{\text{peak}}}$	K^+ 1.4 ± 0.4 ± 0.1 1.6 ± 0.4 ± 0.1	K^0 0.6 ± 0.3 ± 0.1 0.7 ± 0.3 ± 0.1	$\psi(2S)$ $K^{*+} \rightarrow K^+ \pi^0$ $1.4 \pm 0.4 \pm 0.1$ $1.4 \pm 0.4 \pm 0.1$	$ \rightarrow \nu \overline{\nu} \\ K^{*+} \rightarrow K_S^0 \pi^+ \\ 1.0 \pm 0.3 \pm 0.1 \\ 1.5 \pm 0.4 \pm 0.1 $	$K^{*0} \rightarrow K^+ \pi^-$ $3.5 \pm 0.7 \pm 0.3$ $3.9 \pm 0.7 \pm 0.3$	$K^{*0} \rightarrow K_S^0 \pi^0$ $0.6 \pm 0.2 \pm 0.1$ $0.6 \pm 0.2 \pm 0.1$
	$\frac{K^+}{1.4 \pm 0.4 \pm 0.1}\\1.6 \pm 0.4 \pm 0.1\\57.2 \pm 3.5 \pm 3.3$	$\frac{K^{0}}{\begin{array}{c} 0.6 \pm 0.3 \pm 0.1 \\ 0.7 \pm 0.3 \pm 0.1 \\ 13.1 \pm 1.2 \pm 1.4 \end{array}}$	$\psi(2S)$ $K^{*+} \to K^{+}\pi^{0}$ $1.4 \pm 0.4 \pm 0.1$ $1.4 \pm 0.4 \pm 0.1$ $8.1 \pm 1.7 \pm 0.7$	$ \rightarrow \nu \overline{\nu} \\ K^{*+} \rightarrow K_S^0 \pi^+ \\ 1.0 \pm 0.3 \pm 0.1 \\ 1.5 \pm 0.4 \pm 0.1 \\ 4.9 \pm 1.1 \pm 0.4 $	$K^{*0} \rightarrow K^+ \pi^-$ $3.5 \pm 0.7 \pm 0.3$ $3.9 \pm 0.7 \pm 0.3$ $14.2 \pm 1.2 \pm 1.6$	$K^{*0} \to K_S^0 \pi^0$ 0.6 ± 0.2 ± 0.1 0.6 ± 0.2 ± 0.1 0.6 ± 0.1 ± 0.1
	$\frac{K^{+}}{1.4 \pm 0.4 \pm 0.1}\\1.6 \pm 0.4 \pm 0.1\\57.2 \pm 3.5 \pm 3.3\\3$	$\frac{K^{0}}{\begin{array}{c} 0.6 \pm 0.3 \pm 0.1 \\ 0.7 \pm 0.3 \pm 0.1 \\ 13.1 \pm 1.2 \pm 1.4 \\ 1 \end{array}}$	$\psi(2S)$ $K^{*+} \rightarrow K^+ \pi^0$ $1.4 \pm 0.4 \pm 0.1$ $1.4 \pm 0.4 \pm 0.1$ $8.1 \pm 1.7 \pm 0.7$ 1	$ \rightarrow \nu \overline{\nu} \\ K^{*+} \rightarrow K_S^0 \pi^+ \\ \hline 1.0 \pm 0.3 \pm 0.1 \\ 1.5 \pm 0.4 \pm 0.1 \\ 4.9 \pm 1.1 \pm 0.4 \\ 3 \\ \hline 3 $	$\begin{array}{c} K^{*0} \rightarrow K^{+}\pi^{-} \\ 3.5 \pm 0.7 \pm 0.3 \\ 3.9 \pm 0.7 \pm 0.3 \\ 14.2 \pm 1.2 \pm 1.6 \\ 5 \end{array}$	$\begin{array}{c} K^{*0} \to K^0_S \pi^0 \\ 0.6 \pm 0.2 \pm 0.1 \\ 0.6 \pm 0.2 \pm 0.1 \\ 0.6 \pm 0.1 \pm 0.1 \\ 1 \end{array}$
$ \begin{array}{c} \hline \hline \\ \hline N_i^{\text{peak}} \\ N_i^{\text{bkg}} \\ \varepsilon_i^{\text{sig}} \ (\times 10^{-8}) \\ \hline N_i^{\text{obs}} \\ \hline \\ \hline \mathcal{B}(\psi(2S) \rightarrow \nu \overline{\nu} \end{array} \end{array} $	$\frac{K^+}{1.4 \pm 0.4 \pm 0.1}\\1.6 \pm 0.4 \pm 0.1\\57.2 \pm 3.5 \pm 3.3\\3$	$\frac{K^{0}}{\begin{array}{c} 0.6\pm0.3\pm0.1\\ 0.7\pm0.3\pm0.1\\ 13.1\pm1.2\pm1.4\\ 1\end{array}}$	$\psi(2S)$ $K^{*+} \rightarrow K^{+}\pi^{0}$ $1.4 \pm 0.4 \pm 0.1$ $1.4 \pm 0.4 \pm 0.1$ $8.1 \pm 1.7 \pm 0.7$ 1 $(5.6^{+7.4+1}_{-4.6-1})$		$\begin{array}{c} K^{*0} \rightarrow K^{+}\pi^{-} \\ 3.5 \pm 0.7 \pm 0.3 \\ 3.9 \pm 0.7 \pm 0.3 \\ 14.2 \pm 1.2 \pm 1.6 \\ 5 \end{array}$	$\begin{array}{c} K^{*0} \to K^0_S \pi^0 \\ 0.6 \pm 0.2 \pm 0.1 \\ 0.6 \pm 0.2 \pm 0.1 \\ 0.6 \pm 0.1 \pm 0.1 \\ 1 \end{array}$

$B \rightarrow h^{(*)} \nu \bar{\nu}$: Summary

Branching Fraction Upper Limit (10^{-5})

Back to p.10

Belle 2013 result supercedes Belle 2007.

Belle 2013, 772M $B\overline{B}$, Had. Belle 2007, 535M $B\overline{B}$, Had.

Babar 2013, 471M $B\overline{B}$, Had. Babar, 08' 10', ~460M $B\overline{B}$, SL. Babar, Combined.

Had. : Hadronic Tagging Method SL. : Semi-leptonic Tagging Method

Belle 2007 : PRL 99, 221802 (2007). Babar 08' : PRD 78, 072007 (2008). Babar 10' : PRD 82, 112002 (2010).

Contraction of the second		K *	K
	2013 Had.	7.9	0.2-3.2
P	rev. SL+2013 Had.		1.7

<Babar's Had. + SL. Combined Result>

$B^0 \rightarrow invisible: BACKUP$

Y. Yook (Yonsei Univ.), B decays with significant missing energy at Belle, FPCP 2013

$B^0 \rightarrow invisible: PDF modeling$

- PDF obtained from unbinned maximum likelihood fits.
- E_{ECL} : Discrete histogram function
 - Energy threshold within 0 0.05 GeV
- $cos\theta_B$: Legendre Polynomials
- Combined PDF: $P(E_{ECL}, cos\theta_B) = P(E_{ECL}) \times P(cos\theta_B)$
 - Low correlation between $E_{ECL} \& \cos \theta_B$

Belle: PRD 86, 032002 (2012).

$B^{0} \rightarrow invisible:$ Systematics

Sources	Syst. uncertainty
$N(B\overline{B})$	1.4
Tagging efficiency	8.3
Track veto efficiency	1.6
π^0 veto efficiency	2.0
K_L veto efficiency	2.0
Sum	9.0

On ϵ_{signal}

Sources	Syst. uncertainty(Events)
Signal	negligible
$Generic B \ BG$	+1.6 -1.4
$\operatorname{Rare} B$ BG	± 0.1
Non- B BG	+1.9 -1.3
Non- B BG(binning effect)	+0.0 -1.8
Sum	$+2.5 \\ -2.6$

On N_{sig}

Belle: PRD 86, 032002 (2012).

$B^0 \rightarrow invisible$: Neural Network Back to p.16 1. $cos\theta_{B,D(*)-\ell}$ Common 2. $cos \angle (B_{Tag} thrust, D(*) - \ell momentum)$ 3. *p*^{*CM*}_ℓ 1. Missing Mass 4-6: $D\ell\nu$ tag only (invisible) 2. *B*-vertex probability 3. 1st-0th L-momenta in CM 4. Transverse momentum of $D - \ell$ momentum in CM 5. Minimum mass of any two tracks 6. Category 5 for any three tracks In addition to all 1. E_{γ} on the signal side (Lab. Frame) 2: $D\ell\nu$ tag only that, for (invisible)+ γ 2. M_{miss}^{tag}

BABAR: PRD 86, 051105(R) (2012).

Y. Yook (Yonsei Univ.), B decays with significant missing energy, FPCP 2013

$B^0 \rightarrow invisible: Systematics$ Back to p.17

TABLE II. Summary of the systematic uncertainties.			
Source	$B^0 \rightarrow \text{invisible}$	$B^0 \rightarrow \text{invisible} + \gamma$	
Normalization errors			
B-counting	0.6%	0.6%	
Efficiency errors			
Tagging efficiency	3.5%	3.5%	
$m_D (\Delta m)$ selection	1%	1.3%	
Preselection	3%	2.4%	
Neural network	6.1%	8.2%	
Single photon		1.8%	
Total	7.7%	9.5%	
Yield errors (events)			
Background parameter	15.8	6.5	
Signal parameter	2.0	1.2	
Fit technique		1.0	
E_{extra} shape	0.1	1.8	
Total	15.9	6.9	

BABAR: PRD 86, 051105(R) (2012).

Y. Yook (Yonsei Univ.), B decays with significant missing energy, FPCP 2013

• Comparison of MC events and the Data in the sideband of p_{ℓ}^{B} (2.0 – 2.5 GeV)

	N _{data}	N _{MC}	$\Sigma \chi^2/{ m n.d.f}~(p_\ell^B)$
$B^+ \to e^+ \nu_e$	18	14	0.39
$B^+ \to \mu^+ \nu_\mu$	28	20	0.92

- Tag efficiency correction from a $B \to D^{(*)} \ell \nu_{\ell}$ control sample study applied.
- A good agreement between MC events and the experimental Data.

Y. Yook (Yonsei Univ.), B decays with significant missing energy at Belle, FPCP 2013

$B^+ \rightarrow \ell^+ \nu_{\ell}$: Background Modeling

Back to P.20

Analysis Strategy:

Fit the sideband of p_{ℓ}^{B} (2 – 2.5 GeV/c) to extrapolate the background into the signal region (~2.6 – 2.7 GeV/c). Dedicated MC modeling for peaking BG at signal region.

1-D unbinned maximum likelihood fit in p_{ℓ}^{B} for modeling the BG PDF according to MC samples.

Component-wise fit + Addition in proportion to luminosity.

BG-component by component modeling in $B^+ \rightarrow \mu^+ \nu_{\mu}$ search.

Y. Yook (Yonsei Univ.), B decays with significant missing energy at Belle, FPCP 2013

$B^+ \rightarrow \ell^+ \nu_\ell$: Branching fraction

Back to P.21

- Branching fraction is obtained by $B.F. = \frac{N_{obs} N_{bkg}}{N_{B\overline{B}} * \epsilon_{sig}}$.
- $N_{bkg} = N_{Data(side)} \times \frac{S_{MC(signal)}}{S_{MC(side)}}$
 - $N_{Data(side)}$: Data yield in the sideband p_{ℓ}^{B} obtained from fitting a fixed BG PDF.
 - $\frac{S_{MC(signal)}}{S_{MC(side)}}$: Ratio of MC events in signal and sideband of p_{ℓ}^{B} .
 - Uncertainties on N_{bkg} from

1. Data statistical error 2. Branching Fraction uncertainties 3. I (Varied by 1- σ and accept the difference as the uncertainty)

3. Fit Parameters

• ϵ_{sig} : Obtained by counting in the signal region of p_{ℓ}^B .

Source		Electron Mode	Muon Mode
$N(B\overline{B})$		1.4%	1.4%
Tag efficiency correction		4.2%	4.2%
Signal Efficiency	LID	1.0%	1.0%
	Tracking	0.35%	0.35%
	MC statistics	1.6%	1.5%
	Event shape	11.3%	11.3%
TOTAL(Quadratic Sum)		12.3%	12.3%
$\epsilon_{\ell}(\%)$		0.092 ± 0.011	0.109 ± 0.013

 $<\epsilon_{sig}$ systematic uncertainties>

Systematic uncertainty subjected to ϵ_{sig} is dominated by p_{ℓ}^{B} shape uncertainty. (From a $B^{+} \rightarrow \overline{D}^{0}\pi^{+}$ control-sample study)

$B \rightarrow (X) \ell \nu_h : BACKUP$

 ν_h : Heavy Neutral Lepton

$B \rightarrow (X) \ell \nu_h$: Decays into Nu_h

$$\begin{split} \frac{\text{leptonic}}{d\text{Br}\left(H^{+} \to l_{\alpha}^{+}N\right)}{dE_{N}} &= \tau_{H} \cdot \frac{G_{F}^{2} f_{H}^{2} M_{H} M_{N}^{2}}{8\pi} |V_{H}|^{2} |U_{\alpha}|^{2} \cdot \left(1 - \frac{M_{N}^{2}}{M_{H}^{2}} + 2\frac{M_{l}^{2}}{M_{H}^{2}} + \frac{M_{l}^{2}}{M_{N}^{2}} \left(1 - \frac{M_{l}^{2}}{M_{H}^{2}}\right)\right) \\ & \times \sqrt{\left(1 + \frac{M_{N}^{2}}{M_{H}^{2}} - \frac{M_{l}^{2}}{M_{H}^{2}}\right)^{2} - 4\frac{M_{N}^{2}}{M_{H}^{2}}} \cdot \delta\left(E_{N} - \frac{M_{H}^{2} - M_{l}^{2} + M_{N}^{2}}{2M_{H}}\right), \end{split}$$

Pseudo-scalar meson semi-leptonic

$$\begin{aligned} \frac{d \text{Br} \left(H \to H' l_{\alpha}^{+} N\right)}{d E_{N}} &= \tau_{H} \cdot |U_{\alpha}|^{2} \cdot \frac{|V_{HH'}|^{2} G_{F}^{2}}{64 \pi^{3} M_{H}^{2}} \times \int dq^{2} \left(f_{-}^{2} (q^{2}) \cdot \left(q^{2} \left(M_{N}^{2} + M_{l}^{2} \right) - \left(M_{N}^{2} - M_{l}^{2} \right)^{2} \right) \right. \\ &+ 2 f_{+} (q^{2}) f_{-} (q^{2}) \left(M_{N}^{2} \left(2M_{H}^{2} - 2M_{H'}^{2} - 4E_{N}M_{H} - M_{l}^{2} + M_{N}^{2} + q^{2} \right) + M_{l}^{2} \left(4E_{N}M_{H} + M_{l}^{2} - M_{N}^{2} - q^{2} \right) \right) \\ &f_{+}^{2} (q^{2}) \left(\left(4E_{N}M_{K} + M_{l}^{2} - M_{N}^{2} - q^{2} \right) \left(2M_{K}^{2} - 2M_{\pi}^{2} - 4E_{N}M_{K} - M_{l}^{2} + M_{N}^{2} + q^{2} \right) \right. \\ &- \left(2M_{K}^{2} + 2M_{\pi}^{2} - q^{2} \right) \left(q^{2} - M_{N}^{2} - M_{l}^{2} \right) \right) \right), \\ &\overline{q^{2}} = \left(p_{l} + p_{N} \right)^{2} \\ &V_{H} = V_{ud} \text{ for a pion} \end{aligned}$$

D. Gorbunov and M. Shaposhnikov, JHEP 0710, 015 (2007) [arXiv:0705.1729 [hep-ph]].

$B \rightarrow (X) \ell \nu_h$: Decays into Nu_h Back to p.25

Vector meson semi-leptonic

$$\begin{split} \frac{d\mathrm{Br}\left(H \to V l_{\alpha} N\right)}{dE_{N}} &= \tau_{H} \cdot |U_{\alpha}|^{2} \cdot \frac{|V_{HV}|^{2} G_{F}^{2}}{32\pi^{3} M_{H}} \times \int dq^{2} \left(\frac{f_{2}^{2}}{2} \left(q^{2} - M_{N}^{2} - M_{l}^{2} + \omega^{2} \frac{\Omega^{2} - \omega^{2}}{M_{V}^{2}}\right) \\ &+ \frac{f_{5}^{2}}{2} \left(M_{N}^{2} + M_{l}^{2}\right) \left(q^{2} - M_{N}^{2} + M_{l}^{2}\right) \left(\frac{\Omega^{4}}{4M_{V}^{2}} - q^{2}\right) + 2f_{3}^{2} M_{V}^{2} \left(\frac{\Omega^{4}}{4M_{V}^{2}} - q^{2}\right) \left(M_{N}^{2} + M_{l}^{2} - q^{2} + \omega^{2} \frac{\Omega^{2} - \omega^{2}}{M_{V}^{2}}\right) \\ &+ 2f_{3}f_{5} \left(M_{N}^{2} \omega^{2} + \left(\Omega^{2} - \omega^{2}\right) M_{l}^{2}\right) \left(\frac{\Omega^{4}}{4M_{V}^{2}} - q^{2}\right) + 2f_{1}f_{2} \left(q^{2} \left(2\omega^{2} - \Omega^{2}\right) + \Omega^{2} \left(M_{N}^{2} - M_{l}^{2}\right)\right) \\ &+ \frac{f_{2}f_{5}}{2} \left(\omega^{2} \frac{\Omega^{2}}{M_{V}^{2}} \left(M_{N}^{2} - M_{l}^{2}\right) + \frac{\Omega^{4}}{M_{V}^{2}} M_{l}^{2} + 2 \left(M_{N}^{2} - M_{l}^{2}\right)^{2} - 2q^{2} \left(M_{N}^{2} - M_{l}^{2}\right)\right) \\ &+ f_{2}f_{3} \left(\Omega^{2} \omega^{2} \frac{\Omega^{2} - \omega^{2}}{M_{V}^{2}} + 2\omega^{2} \left(M_{l}^{2} - M_{l}^{2}\right) + \Omega^{2} \left(M_{N}^{2} - M_{l}^{2} - q^{2}\right)\right) \\ &+ f_{1}^{2} \left(\Omega^{4} \left(q^{2} - M_{N}^{2} + M_{l}^{2}\right) - 2M_{V}^{2} \left(q^{4} - \left(M_{N}^{2} - M_{l}^{2}\right)^{2}\right) + 2\omega^{2}\Omega^{2} \left(M_{N}^{2} - q^{2} - M_{l}^{2}\right) + 2\omega^{4}q^{2}\right)\right), \\ q^{2} = (p_{l} + p_{N})^{2} \qquad f_{1} = \frac{V}{M_{H} + M_{V}}, \quad f_{2} = (M_{H} + M_{V}) \cdot A_{1}, \quad f_{3} = -\frac{A_{2}}{M_{H} + M_{V}}, \\ \omega^{2} = M_{H}^{2} - M_{V}^{2} + M_{N}^{2} - M_{l}^{2} - 2M_{H}E_{N} \qquad f_{4} = \left(M_{V} \left(2A_{0} - A_{1} - A_{2}\right) + M_{H} \left(A_{2} - A_{1}\right)\right) \cdot \frac{1}{q^{2}}, \quad f_{5} = f_{3} + f_{4} \\ \Omega^{2} = M_{H}^{2} - M_{V}^{2} - q^{2} \end{aligned}$$

D. Gorbunov and M. Shaposhnikov, JHEP 0710, 015 (2007) [arXiv:0705.1729 [hep-ph]].

,

$$B \rightarrow (X) \ell \nu_h$$
: Nu_h $\rightarrow pi + lep$
Back to p.25

$$\Gamma\left(N \to H^+ l_{\alpha}^-\right) = \frac{|U_{\alpha}|^2}{16\pi} G_F^2 |V_H|^2 f_H^2 M_N^3 \cdot \left(\left(1 - \frac{M_l^2}{M_N^2}\right)^2 - \frac{M_H^2}{M_N^2} \left(1 + \frac{M_l^2}{M_N^2}\right)\right)$$
$$\times \sqrt{\left(1 - \frac{\left(M_H - M_l\right)^2}{M_N^2}\right) \left(1 - \frac{\left(M_H + M_l\right)^2}{M_N^2}\right)},$$

D. Gorbunov and M. Shaposhnikov, JHEP 0710, 015 (2007) [arXiv:0705.1729 [hep-ph]].

$B \to X \ell \nu_h$: Prev. Experiment Summary

Figure 3. Bounds on $|V_{e4}|^2$ versus m_4 in the mass range 10 MeV-100 GeV. The areas with solid (black) contour labeled $\pi \to e\nu$ and double dash dotted (purple) contour labeled $K \to e\nu$ are excluded by peak searches [83, 85]. Limits at 90% C.L. from beam-dump experiments are taken from ref. [86] (PS191), ref. [87] (NA3) and ref. [88] (CHARM). The limits from contours labeled DELPHI and L3 are at 95% C.L. and are taken from refs. [89] and [90] respectively. The excluded region with dotted (maroon) contour is derived from a reanalysis of neutrinoless double beta decay experimental data [84].

$B \rightarrow X \ell \nu_h$: Backgrounds

P $B \rightarrow X \ell \nu_h$: Flight Length vs Eff.

BELLE

$B \rightarrow X \ell \nu_h$: Combinat. BG. Supp.

$B \rightarrow X \ell \nu_h$: M_x distributions

 $B \rightarrow X \ell \nu_h$: Systematics

Requirement	Systematic error, %
tracking	8.7
recoil mass	4.1
$\mathcal{P}_{e}(\ell_{1})$	2.8
$\mathcal{P}_{\mu}(\ell_1)$	4.9
$\mathcal{P}_{e}(\ell_{2})$	2.3
$\mathcal{P}_{\mu}(\ell_2)$	3.1
$d\phi$	5.8
dr	3.7
z_{dist}	10.0
χ^2_1	2.9
χ^2_2	10.1
first hit	2.9
lepton veto	1.8
proton veto	1.6
Total	23.2

Belle: PRD 87, 071102(R) (2013).

Y. Yook (Yonsei Univ.), B decays with significant missing energy, FPCP 2013

$B \rightarrow X \ell \nu_h$: Mixing upper limit

Back to p.26

Belle: PRD 87, 071102(R) (2013).