

New BABAR Results since FPCP 2012

- Review on b→s,dγ and b→s/dℓt analyses with focus on 3 new results since FPCP2012
- Study of $B \rightarrow X_{s\gamma}$ with 424 fb⁻¹ using a sum of exclusive modes • CP asymmetry
 - Analysis of $B \rightarrow \pi/\eta \ell^{+} \ell^{-1}$ modes with 424 fb⁻¹ Branching fraction limits

2

BABAR: hep-ex/1303.6010 (2013)

• Study of $B \rightarrow X_{s+d}\gamma$ with 347 fb⁻¹ using a fully inclusive method • γ energy spectrum and γ energy moments • CP asymmetry BABAR: PRL109, 191801 (2012) PRD86, 112008 (2012)

All BABAR analyses are blinded

Introduction

B→Xγ & B→Xℓ+ℓ are flavor-changing neutral current (FCNC) processes, forbidden in SM at tree level

 C_9^{eff} & C_{10}^{eff} (V & A parts of weak penguin and box)

Effective Hamiltonian factorizes short-distance from long-distance effects $[\mathcal{O}(\alpha_s)]$ $H_{eff} = \frac{4G_F}{\sqrt{2}} \sum_i C_i(\mu) \mathcal{O}_i$

→ 4 effective Wilson coefficient: C7 eff, C8 eff, C9 eff, C10 eff

- New physics adds new loops with new particles mtexts modifies SM values of Wilson coefficients and may introduce new terms, e.g. C₅ and C_p
- Probe here new physics at a scale of a few TeV

$B \rightarrow X_{s\gamma}$ Studies

• In the Standard Model (SM) the $B \rightarrow X_{s\gamma}$, branching fraction is calculated at NNLL (4 loops)

 $\mathcal{B}(B \rightarrow X_{s}\gamma) = (3.14 \pm 0.22) \times 10^{-4} (E_{\gamma} > 1.6 \text{ GeV})$

- Misiak et al., PRL98, 022002 (2007); Misiak FCPC
 The shape of the photon energy spectrum depends on b quark momentum inside the B meson (Fermi motion)
- Since the shape function is similar to that in $B \rightarrow X_u ev$, its measurement helps with determining $|V_{ub}|$
- In the kinetic scheme, measure m_b , energy moments, and HQET parameters, e.g. m_{π^2} (kinetic energy of b quark)
- The CP asymmetry is sensitive to new physics
- Three strategies have been used:
 Fully inclusive analysis with lepton tags *
 Semi inclusive analysis *
 Fully inclusive analysis with B-reconstruction G. Eigen, FPCP13 Rio de Janeiro, 22/05/2013

Inclusive $B \rightarrow X_s \gamma$: E_{γ} Spectrum

Use BABAR sample of (383±4)×10⁶ BB events

Measured background subtracted E_e spectrum

- Tag recoiling B via Xe[±]v or Xµ[±]v decay to suppress continuum background
- Use optimized π^0 and η vetoes, E_{miss} , and 2 neural networks (for e, μ each) based on event shape variables
- Signal efficiency is $\varepsilon_s \sim 2.5\%$ compared to $\varepsilon_{continuum} = 0.0005\%$ and $\varepsilon_{B\overline{B}} = 0.013\%$
- Estimate remaining continuum background from qq continuum sample
- From measured E_{γ} spectrum yield branching fraction after correcting for calorimeter resolution, Doppler smearing and ε_{signal}

 $\mathcal{B}(B \rightarrow X_{s}\gamma) = \left(3.21 \pm 0.15_{stat} \pm 0.29_{sys} \pm 0.08_{mod}\right) \times 10^{-4} \ (E_{\gamma} > 1.8 \ GeV)$

Partial branching fraction

Kinetic model with HFAG averages

G. Eigen, FPCP13 Rio de Janeiro, 22/05/2013

Inclusive $B \rightarrow X_{s\gamma}$: New Physics Limits

- In 2Higgs Doublet Models, B→Xγ may receive additional contributions from loop diagrams with a charged Higgs
- Extrapolate $\mathcal{B}(B \rightarrow X\gamma)$ to $E_{\gamma} > 1.6 \text{ GeV} (1.033 \pm 0.006)$

$$\mathcal{B}(B \to X_{s}\gamma) = (3.31 \pm 0.16 \pm 0.30 \pm 0.09) \times 10^{-4}$$

In good agreement with SM prediction $\mathcal{B}(B \rightarrow X_{s}\gamma) = (3.14 \pm 0.22) \times 10^{-4}$

- Use extrapolated result to constrain m_{H±} in the type II two-higgs doublet model
- Exclude charged Higgs masses of m_{H±} < 327 GeV at 95% CL independent of tan β

u.c.t

■ Recent BABAR $\mathcal{B}(B \rightarrow D^{(*)}\tau v)$ results exclude entire type II 2HDM G. Eigen, FPCP13 Rio de Janeiro, 22/05/2013

$B \rightarrow X_{s\gamma}$: Direct A_{CP}

$B \rightarrow X_{s\gamma}$: Event Selection for A_{CP}

11

- Use full BABAR sample of (471±1)×10⁶ BB events
- Reconstruct 16 exclusive modes to measure \mathcal{A}_{CP} in semi-inclusive analysis
- Maximize signal extraction with Signal Selecting
 Classifier → bagged decision tree with 6 inputs
- Select candidate with maximum SSC
 → improved efficiency compared to ∆E selection
- Train separate bagged decision tree to separate true primary γ from that of π^0 decay
- Use Background Rejection Classifier to remove continuum background based on bagged decision trees using event shape variables
- Use X_s mass-dependent optimization for S/(S+B)^{1/2} & loose K, π IDs
 G. Eigen, FPCP13 Rio de Janeiro, 22/05/2013

Final State $B^+ \to K_S \pi^+ \gamma$ $B^+ \to K^+ \pi^0 \gamma$ $B^0 \to K^+ \pi^- \gamma$ $B^+ \to K^+ \pi^+ \pi^- \gamma$ $B^+ \to K_S \pi^+ \pi^0 \gamma$ $B^+ \to K^+ \pi^0 \pi^0 \gamma$ $B^0 \to K^+ \pi^- \pi^0 \gamma$ $B^+ \to K_S \pi^+ \pi^- \pi^+ \gamma$ $B^+ \to K^+ \pi^+ \pi^- \pi^0 \gamma$ $B^+ \to K_S \pi^+ \pi^0 \pi^0 \gamma$ $B^0 \rightarrow K^+ \pi^+ \pi^- \pi^- \gamma$ $B^0 \to K^+ \pi^- \pi^0 \pi^0 \gamma$ $B^+ \to K^+ \eta \to \gamma \gamma) \gamma$ $B^0 \to K^+ \eta \to \gamma \gamma) \pi^- \gamma$ $B^+ \to K^+ K^- K^+ \gamma$ $B^0 \rightarrow K^+ K^- K^+ \pi^- \gamma$

$A \to X_{s\gamma}: Semi-Inclusive A_{CP} Results$

- Fit m_{ES} for \overline{B} and B tagged samples simultaneously to extract A_{CP}
- Correct raw asymmetry for detector bias determined from sidebands
- In full X_s mass region determine corrected A_{CP}

 $\mathcal{A}_{CP}(X_{s}\gamma) = (1.73 \pm 1.93_{stat} \pm 1.02_{sys})\%$

This agrees well with the SM prediction

 $-0.6\% < A_{CP}^{SM}(X_{s}\gamma) < 2.8\%$

These new results have the lowest uncertainties

This is the first $\Delta A_{CP}(X_{sY})$ measurement and the first constraint on the ratio of Wilson coefficients C_8^{eff}/C_7^{eff} for new physics in this process

Analysis Methodology for $B \rightarrow K^{(*)} \ell^+ \ell^-$

- Fully reconstruct $B \rightarrow K^{(*)} \ell^+ \ell^-$ final states
 - 8 in BABAR (471x10⁶ BB): K, K^0_s , $K^{\pm}\pi^{\mp}$ or $K^0_s \pi^{\pm}$
 - 10 in Belle (657×10⁶ BB): K, K^0_{S} , $K^{\pm}\pi^{\mp}$, $K^{\pm}\pi^0$ or $K^0_{S}\pi^{\pm}$
 - these hadrons recoil against e^+e^- or $\mu^+\mu^-$
 - Select e[±] with p>0.3 (0.4) GeV/c; μ^{\pm} with p>0.7 GeV/c
 - Require good particle ID for e, μ , K, π ; select K⁰_S $\rightarrow \pi^{+}\pi^{-}$

Utilize kinematic variables
$$m_{ES} = \sqrt{\left(\frac{E_{CM}^2}{4} - p_B^{*2}\right)}$$
 and $\Delta E = E_B^* - \frac{E_{CM}}{2}$

- Suppress combinatorial BB & qq backgrounds:
 BABAR defines 8 boosted decision trees, Belle uses likelihood
- Veto J/ψ and $\psi(2S)$ mass regions and use them as control samples
- Use pseudo-experiments to study performance
- Measure branching fractions, rate asymmetries and angular observables

$B \rightarrow K^{(*)} \ell^+ \ell^-$: Partial Branching Fractions

- In the SM, partial branching fractions dB/ds are calculated at
 - Low $s=q^2=m_{\ell}^2$, large hadronic recoil $E_{K^*} \rightarrow \Lambda \rightarrow$ use QCD factorization
 - High s ~O(m_b) small hadronic recoil
 E_{K*}~A→ use OPE in 1/m_b
 - Large errors come from errors of form factors in hadronic MEs
- dB/ds is measured in 6 s bins
 - BABAR, Belle: $B \rightarrow K^{(*)} \ell^{+} \ell^{-}$
 - CDF, LHCb: $B \rightarrow K^{(*)}\mu^+\mu^-$
 - CMS, ATLAS: $B \rightarrow K^{*0} \mu^+ \mu^-$
 - Do naïve average (WA) (dominated by LHCb)
- All measurements agree well with the SM prediction

 BABAR
 PRD86, 052012 (2012)

 Belle
 PRL103, 171801 (2009)

 CDF
 CDF-note 10894 (2012)

 CMS
 CMS PAS BPH-11-009 (2013)

 LHCb
 hep-ex/1304.6325 (2013)

 JHEP1212,125 (2012)

$B \rightarrow K^{(*)} \ell^+ \ell^-$: Isospin Asymmetry

$$\mathcal{A}_{I} = \frac{\mathcal{B}(B^{0} \to K^{(*)0}\ell^{+}\ell^{-}) - r_{\tau}\mathcal{B}(B^{\pm} \to K^{(*)\pm}\ell^{+}\ell^{-})}{\mathcal{B}(B^{0} \to K^{(*)0}\ell^{+}\ell^{-}) + r_{\tau}\mathcal{B}(B^{\pm} \to K^{(*)\pm}\ell^{+}\ell^{-})}$$
$$r_{\tau} = \tau_{B^{0}}/\tau_{B^{\pm}} = 1/(1.071 \pm 0.09)$$

- In the SM, A_I is expected at O(+1%) Feldmann & Matias JHEP 0301, 074 (2003)
- Average A_I measurements from BABAR, Belle, CDF & LHCb at low s (1<s<6 GeV²/c⁴)

$$\mathcal{A}_{I}^{low}(B \rightarrow K\ell^{+}\ell^{-}) = -0.31 \pm 0.12$$

 $\mathcal{A}_{I}^{\mathsf{low}}(\mathsf{B} \rightarrow \mathsf{K}^{\star}\ell^{+}\ell^{-}) = -0.15 \pm 0.11$

- At low s, A_{I} is below the SM, but consistent with the SM
- BABAR results agree with those from Belle and the WA dominated by LHCb

$B \rightarrow K^{(*)} \ell^+ \ell^-$: CP Asymmetry

BABAR: PRD86,032012 (2012) Belle: PRL 103, 171801 (2009)

$B \rightarrow K^{(*)} \ell^+ \ell^-$: Lepton Flavor Ratio

→K^{*}ℓ⁺ℓ⁻: Forward-Backward Asymmetry J • A_{FB} is measured by <[₩] 0.8 C₇=-C₇SM BABAR • BABAR & Belle in $B \rightarrow K^* \ell^+ \ell^$ preliminary 0.6E • CDF in $K^*\mu^+\mu^-$ 0.4 LHCb, CMS and ATLAS 0.2 in $K^{*0}\mu^+\mu^-$ 0 -0.2 BABAR A_{FB} measurement -0.4 $(B \rightarrow K^* \ell^+ \ell^-)$ is the most precise -0.6 except for LHCb ($K^{*0}\mu^{+}\mu^{-}$) 2 6 8 10 12 14 16 18 Δ s [GeV²/c⁴] ATLAS Conf-2013-38 CMS CMS PAS BPH-11-009 (2013) All measurements are consistent Belle PRL103, 171801 (2009) LHCb hep-ex/1304.6325 (2013) JHEP1212.125 (2012) CDF CDF-note 10894 (2012) Do naïve world average of all AFB results Ali et al. PRD 61, 074024 (2000) Buchalla et al. PRD 63, 014015 (2000) → WA (dominated by LHCb) agrees well with the SM Ali et al. PRD 66, 034002 (2002) Krüger et al. PRD 61, 114028 (2002) In low mass region (1<s<6 GeV²/c⁴) measure Krüger & Matias PRD71, 094009 (2005) C. Bobeth et al. JHEP 1007, 098 (2010) C. Bobeth et al. PRD87,034016 (2012) $\mathcal{A}_{FB}(B \to K^* \ell^+ \ell^-) = 0.26^{+0.27}_{-0.30} \pm 0.07$ $1 < s < 6 \text{ GeV}^2/c^4$ = -0.0494^{+0.0281} **K^{*0}ℓ⁺ℓ** • world average: $\mathcal{A}_{ED}^{WA}(K^*\ell\ell) = -0.074$

0.048

G. Eigen, ICHEP12, Melbourne 13/07/2012

22

$A \to K^* \ell^+ \ell^-$: K* Longitudinal Polarization $\mathcal{F}_{\mathcal{K}}$

Search for $B \rightarrow \pi/\eta \ell^+ \ell^-$ Decays

- In the SM, B→X_d ℓ⁺ℓ⁻modes are also mediated in in lowest order by the photon penguin, Z-penguin and WW box diagrams
- The decays are suppressed by $|V_{td}/V_{ts}|^2 \sim 0.04$ with respect to the related b \rightarrow s $\ell^+\ell^-$ modes
- In extensions of the SM, rates may increase significantly
- BABAR has updated the search for B→πℓ⁺ℓ⁻ modes and performed the first search for B→ηℓ⁺ℓ⁻ modes using 471x10⁶ BB events
- SM predictions: $\mathcal{B}\left(\mathsf{B}^{\pm} \to \pi^{\pm}\ell^{+}\ell^{-}\right) = (1.96 - 3.30) \times 10^{-8}$ $\mathcal{B}\left(\mathsf{B}^{0} \to \eta\ell^{+}\ell^{-}\right) = (2.5 - 3.7) \times 10^{-8}$

G. Eigen, FPCP13 Rio de Janeiro, 22/05/2013

24

$B \rightarrow \pi/\eta \ell^+ \ell^-$: Analysis Methodology

- BABAR fully reconstructs 8 $B \rightarrow \pi/\eta \ell^+ \ell^-$ final states (471x10⁶ BB) • Select π^{\pm} , π^0 , $\eta \rightarrow \gamma\gamma$, or $\eta \rightarrow \pi^+ \pi^- \pi^0$ recoiling against $e^+ e^-$ or $\mu^+ \mu^-$
 - Select $p_{\ell} > 0.3$ GeV/c, recover e[±] bremsstrahlung losses, remove $\gamma \rightarrow ee$
 - Require good particle ID for e, μ , π ; for γ require E $_{\gamma}$ > 50 MeV
 - Select π⁰: 115<m_{γγ}<150 MeV; η: 500<m_{γγ}<575 MeV, 535<m_{3π}<565 MeV
 - Require $A_{\gamma}^{\eta} = (E_{1,\gamma} E_{2,\gamma})/(E_{1,\gamma} + E_{2,\gamma}) < 0.8$

• Veto J/ψ and $\psi(2S)$ mass regions

- Suppress combinatorial BB & qq backgrounds by NNs, 2 each for e⁺e⁻ & μ⁺μ⁻ modes using 12 and 14 input distributions
- Simultaneous fit to m_{ES} and ΔE distributions
- Use pseudo-experiments for validations

Search for $B \rightarrow \pi \ell^+ \ell^-$ Modes

- Perform simultaneous unbinned maximum likelihood fit to the m_{ES} & ΔE distributions of $B \rightarrow \pi^{\pm} \ell^{\pm} \ell^{\pm} \& B \rightarrow \pi^{0} \ell^{\pm} \ell^{\pm}$, separately for $e^{\pm}e^{\pm} \&$ $\mu^{\pm}\mu^{-}$ modes
- Add $B \rightarrow K^{\pm} \ell^{+} \ell^{-}$ mode in the fit to extract peaking background
- Use vetoed J/ψ and $\psi(2S)$ samples to validate fit and evaluate $B \rightarrow K^{\pm} \ell^{\pm} \ell^{\pm}$

hep-ex/1303.6010 (2013)

Search for $B \rightarrow \eta \ell^+ \ell^-$ Modes

Use vetoed J/ψ and $\psi(25)$ samples to validate fit

In addition, perform fits for Isospin averaged - modes $B \rightarrow \pi e^+e^-$ and $B \rightarrow \pi \mu^+ \mu$ Lepton-flavor averaged modes $B \rightarrow \pi^{\pm} \ell^{+} \ell^{-}, B \rightarrow \pi^{0} \ell^{+} \ell^{-} \text{ and } B \rightarrow \eta \ell^{+} \ell^{-}$ Isospins and lepton-flavor averaged modes $B \rightarrow \pi \ell^+ \ell^-$

27

Conclusions

- New BABAR $B \rightarrow X_{s\gamma}$ results
 - Branching fractions are in good agreement with the SM prediction
 - New A_{CP} is the most precise and consistent with the SM prediction
 - New measurements on photon energy moments
 - Set limit on charged Higgs boson m_{H±} > 327 GeV @ 95% CL

• New BABAR $B \rightarrow \pi/\eta \ell^+ \ell^-$ results on branching fraction upper limits

- Present B $\rightarrow X\gamma$ and B $\rightarrow X\ell^+\ell^-$ results are in agreement with the SM • Largest deviations are < 3σ
 - Need higher precision to probe the SM
- Significant progress will come from LHCb and Belle II
- High statistics samples allow for studying new observables
 probe new angular observables that help in revealing small discrepancies wrt the SM
- LHCb and Belle II will have the first shot at them

$B \rightarrow X_{s\gamma}$ Exclusive

- Solution Various b→sγ and b→dγ exclusive modes have been measured by BABAR, Belle and CLEO
 - B(B $\rightarrow \rho\gamma$)/B(B $\rightarrow K^*\gamma$) yield $|V_{td}/V_{ts}|$

$$\frac{\mathcal{B}(\mathbf{B} \rightarrow \rho \gamma)}{\mathcal{B}(\mathbf{B} \rightarrow \mathbf{K}^{*} \gamma)} = \mathbf{S}_{\rho} \left| \frac{\mathbf{V}_{td}}{\mathbf{V}_{ts}} \right|^{2} \frac{\left(\mathbf{m}_{B}^{2} - \mathbf{m}_{\rho}^{2} \right)^{3}}{\left(\mathbf{m}_{B}^{2} - \mathbf{m}_{k^{*}}^{2} \right)^{3}} \zeta^{2} \left[\mathbf{1} + \Delta \mathbf{R}(\rho / \mathbf{K}^{*}) \right]$$

- ζ=0.85±0.1 (ratio of form factors) $\Delta R(\rho^0 \gamma)$ =0.092±0.073 (higher-order correct.) S is isospin factor
- BABAR/Belle average is

 V_{td}

 $|\rho/\omega\gamma|$

 $\mathcal{B}(B \rightarrow (\rho, \omega)\gamma) = (1.3 \pm 0.23) \times 10^{-6}$

Yield constraint on $|V_{td}/V_{ts}|$

 $= 0.190^{+0.013}_{-0.014}(exp) \pm 0.015(th)$

• Angular Distributions for $B \rightarrow K^{(*)} \ell^+ \ell^-$ • \mathcal{A}_{FB} results from interplay between $C_9(q^2)C_{10}$ and C_7C_{10}/q^2

 $\frac{d\mathcal{A}_{FB}}{dq^{2}} \propto -\left\{ \operatorname{Re}\left[C_{9}^{eff}(q^{2})C_{10}\right] \bigvee_{q} + \frac{m_{b}m_{B}}{q^{2}} \operatorname{Re}\left[C_{7}^{eff}C_{10}\right] \left[\bigvee_{q} + A_{1}T_{1}\left(1 + \frac{m_{k^{\star}}}{m_{B}}\right) + A_{1}T_{1}\left(1 + \frac{m_{k^{\star}}}{m_{B}}\right)\right] \right\} K^{\star} \ell^{+}\ell^{-}$ form factors

Recent SM calculations focus on low q²-region

Feldmann & Matias JHEP 0301, 074 (2003)

Huber, Hurth & Lunghi, Nucl. Phys B802, 40 (2008)

• In the SM, A_{FB} crosses zero around $q_0^2 = 3.5 - 4.5 \ GeV^2$

Semi-Inclusive A_{CP} Event Selection

G. Eigen, FPCP13 Rio de Janeiro, 22/05/2013

33

Fake Rate

$B \rightarrow X_{s\gamma}$ Semi-Inclusive Analysis

- Train separate bagged decision tree to separate true π^0 from fake π^0
- Use Background Rejection Classifier to remove continuum background
- Train random forest with event-shape variables, e.g.
 - Cones of p-flow around B direction
 - L₀, L₁, L₂ of ROE along γ direction
 L₂/L₀
 - $|\cos \theta_B^*|$, B flight direction (CM) • $|\cos \theta_T^*|$, thrust_B- thrust_{ROE} (CM)
 - $|\cos \theta_{\gamma T}^*|$, thrust_y- thrust_{ROE} (CM)

Use X_s mass-dependent optimization

for $S/(S+B)^{1/2}$	$X_s \text{ mass}(\text{GeV})$	SSC	BRC		
	0.6-1.1	> 0.14	> 0.24		
& loose K, T IDS	1.1-2.0	> 0.22	> 0.38		
A Contraction of the	2.0-2.4	> 0.39	> 0.52		
Contractor anon	2.4-2.8	> 0.48	> 0.46		
C Eigen EDCD12 Die de Janeiro 22/05/2012					

Angular Distributions for $B \rightarrow K^{(*)} \ell^+ \ell^-$

Results on \mathcal{F}_{L} and \mathcal{A}_{FB}

 \mathcal{F}_{L}

 $\mathcal{A}_{\mathsf{FB}}$

$s(\text{ GeV}^2/c^4)$	$B \to K^* \ell^+ \ell^-$	$B^0 o K^{*0} \ell^+ \ell^-$	$B^+ \to K^{*+} \ell^+ \ell^-$
$\begin{array}{r} 0.1-2.00\\ 2.00-4.30\\ 4.30-8.68\\ 10.09-12.86\\ 14.18-16.00\\ >16.00\\ \hline 1.00-6.00\end{array}$	$\begin{array}{c} 0.23\substack{+0.10\\-0.09}\pm 0.04\\ 0.15\substack{+0.17\\-0.14}\pm 0.04\\ 0.32\substack{+0.12\\-0.12}\pm 0.06\\ 0.40\substack{+0.12\\-0.12}\pm 0.06\\ 0.43\substack{+0.10\\-0.13}\pm 0.09\\ 0.55\substack{+0.15\\-0.17}\pm 0.03\\ 0.25\substack{+0.09\\-0.08}\pm 0.03\end{array}$	$\begin{array}{c} 0.35\substack{+0.13\\-0.12}\pm0.04\\ 0.34\substack{+0.22\\-0.22}\pm0.08\\ 0.50\substack{+0.18\\-0.15}\pm0.05\\ 0.48\substack{+0.13\\-0.12}\pm0.10\\ 0.42\substack{+0.12\\-0.16}\pm0.11\\ 0.47\substack{+0.18\\-0.20}\pm0.13\\ 0.47\substack{+0.13\\-0.13}\pm0.04\end{array}$	$\begin{array}{c} -0.06\substack{+0.14\\-0.12}\pm0.06\\ -0.19\substack{+0.24\\-0.24}\pm0.04\\ 0.14\substack{+0.15\\-0.12}\pm0.05\\ 0.06\substack{+0.26\\-0.25}\pm0.05\\ 0.58\substack{+0.34\\-0.35}\pm0.06\\ 0.71\substack{+0.30\\-0.32}\pm0.03\\ \hline 0.03\substack{+0.11\\-0.10}\pm0.03\end{array}$
$s(\text{GeV}^2/c^4)$	$B \to K^* \ell^+ \ell^-$	$B^0 o K^{*0} \ell^+ \ell^-$	$B^+ \to K^{*+} \ell^+ \ell^-$
0.1 - 2.00 $2.00 - 4.30$ $4.30 - 8.68$ $10.09 - 12.86$ $14.18 - 16.00$ > 16.00 $1.00 - 6.00$	$\begin{array}{c} 0.14\substack{+0.15\\-0.16}\pm0.20\\ 0.40\substack{+0.18\\-0.22}\pm0.07\\ 0.15\substack{+0.16\\-0.16}\pm0.08\\ 0.36\substack{+0.16\\-0.17}\pm0.10\\ 0.34\substack{+0.08\\-0.15}\pm0.07\\ 0.34\substack{+0.19\\-0.21}\pm0.07\\ 0.17\substack{+0.12\\+0.07\\-0.72}\pm0.07\end{array}$	$\begin{array}{c} -0.07^{+0.20}_{-0.20}\pm0.19\\ 0.21^{+0.23}_{-0.34}\pm0.11\\ 0.20^{+0.19}_{-0.20}\pm0.08\\ 0.35^{+0.16}_{-0.16}\pm0.11\\ 0.31^{+0.11}_{-0.19}\pm0.13\\ 0.34^{+0.17}_{-0.26}\pm0.08\\ \end{array}$	$\begin{array}{c} 0.45\substack{+0.18\\-0.24}\pm0.15\\ 0.73\substack{+0.27\\-0.42}\pm0.07\\ 0.06\substack{+0.27\\-0.26}\pm0.07\\ 0.17\substack{+0.33\\-0.33}\pm0.16\\ 0.42\substack{+0.35\\-0.23}\pm0.09\\ 0.17\substack{+0.38\\-0.38}\pm0.11\\ 0.31\substack{+0.12\\+0.07\end{array}$