FPCP 2013 May 19 - 24, 2013 Buzio - Brazil



# The LHCb upgrade



R. Le Gac on behalf of the LHCb collaboration

CPPM, CNRS/IN2P3 et Aix-Marseille Université

## Outline

- Motivation
- Overview of the LHCb upgrade
- Tracking, particle identification, data processing challenges
- Conclusions

## **Motivation**

#### Heavy flavor physics

The LHCb experiment is devoted to the study of the CP violation and the rare decays in the b and c-quark sectors:

- The origin of the observed pattern of masses and mixing angles for quark and leptons ?
- Reveal new sources of flavor symmetry breaking ?

#### The method is based on:

- theoretically clean observables
- measured with a high precision

and on the comparison between measurements and predictions looking for deviations.

Isidori '12

### Top 10 theoretically clean observables

| $\gamma$ from tree ( $B \rightarrow DK$ ,)              | LHCb | SuperKeKB        |
|---------------------------------------------------------|------|------------------|
| V <sub>ub</sub>   from exclusive semi-leptonic B decays |      | SuperKeKB        |
| $B_{\rm s, d} \rightarrow l^+ l^-$                      | LHCb | Atals, CMS       |
| CP violation in $B_s$ mixing                            | LHCb | Atlas, CMS       |
| $B  ightarrow K^{(*)} l^+ l^-$ , $\nu \nu$              | LHCb | SuperKeKB        |
| $B \rightarrow \tau \nu$ , $\mu \nu$                    |      | SuperKeKB        |
| $K \rightarrow \pi \nu \nu$                             |      | NA62, KOTO, ORKA |
| CP violation in charm                                   | LHCb | SuperKeKB        |
| Lepton flavor violation                                 |      | MEG              |

#### LHCb takes over B-factories and Tevatron exp.





6

### What do we learn so far

Past and running experiments have shown that:

- Flavor changing processes are consistent with the CKM mechanism.
- Large source of flavor symmetry breaking are excluded at the TeV scale.
- The flavor structure of the new physics, if it exists, is very peculiar at the TeV scale (MFV).
- Measurable deviations from the standard model are still expected but should be small.
- The main road is to go to very high precision measurements for the most clean observable.

This is the main motivation for the LHCb upgrade

# Overview of the LHCb upgrade

#### The current trigger



### The trigger limitations

L0 efficiencies:



- $\epsilon$  (hadron) ~ 0.5 ×  $\epsilon$  (muon)
- $p_{\rm T}$  (hadron)  $\gg p_{\rm T}$  (muon)

Saturation of the yields:



–  $p_{\rm T}$  cuts must be raised to stay within the 1 MHz readout rate

### The Upgrade Trigger

- Increase the L0 output rate would considerably improve efficiency and yields for hadronic channels:
  - Remove the L0 (almost)
  - Readout the detector at 40 MHz
  - Full software trigger



#### **Running conditions**

- 25 ns bunch spacing
- ► 2400 colliding bunches at √s = 14 TeV
- Luminosity leveling at *Luminosity* levelin
- Pileup = interactions / beam crossing ~ 2.7
  - design upgraded sub-system to sustain a peak luminosity of  $\mathscr{L} = 2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$
  - Already gained expertise running LHCb in such conditions



2012 50 ns 8 TeV 4×10<sup>32</sup> 1.7

#### LHC upgrade features

Readout rate at 40 MHz instead of 1 MHz

- Full software trigger
- Collect **50 fb<sup>-1</sup>** over 10 years

With the improved trigger and luminosity, the annual yields increase by a factor 20 (10) for hadronic (leptonic) channels w.r.t 2011



#### 40 MHz Detector Upgrade



### LHC 10 years plan



The LHCb detector will be upgraded **in one go** during LS2 It will take data during the phase 2 and the phase 3 (>2022)

#### Roadmap of the LHCb Upgrade

Letter of Intent submitted in March 2011

Framework TDR submitted in June 2012 It defines cost, milestones and institutes scientific interest:

- The LHCC endorses the upgrade plans of the Collaboration
- the CERN Research Board approved the upgrade of LHCb to be part of the long-term exploitation of the LHC
- Decide on technical options by mid 2013 All detector TDRs by end 2013
- 40 MHz detector ready for installation in 2018 during LS2

#### Statistical sensitivities to key observables

Comparable to or better than the theoretical uncertainties:

| Observable                                                                                          | Upgrade [50 fb <sup>-1</sup> ] $\sigma_{stat}$ / expected | Theory uncertainty $\sigma_{\rm theo}$ / expected |
|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------|
| $\phi_{\rm s}(B_{\rm s} \rightarrow J/\psi \phi)$                                                   | 22%                                                       | ~1%                                               |
| $s_0 A_{FB} (B^0 \rightarrow K^{*0} \mu \mu)$                                                       | 2%                                                        | 7%                                                |
| $\mathbf{B}\left(B_{s}^{0} \rightarrow \mu^{+} \mu^{-}\right)$                                      | 5%                                                        | 9%                                                |
| $\mathbf{B}(B^{0} \rightarrow \mu^{+} \mu^{-}) / \mathbf{B}(B_{s}^{0} \rightarrow \mu^{+} \mu^{-})$ | ~35%                                                      | ~5%                                               |
| $\gamma \left( B \rightarrow D^{(*)} K^{(*)} \right)$                                               | 1%                                                        | negligible                                        |

+ more observables in LHCC 2012-007

#### Enlarge the core physics program

| Lepton flavor physics | Majorana neutrino Lepton Flavor Violation in $\tau^\pm$ decays |
|-----------------------|----------------------------------------------------------------|
| Electroweak physics   | $\frac{\sin 2  \theta_{eff}^{lept}}{M_{_W}}$                   |
| Exotic search         | Hidden valley                                                  |
| QCD                   | Central Exclusive Production                                   |

# Tracking Challenges

#### **Tracking Challenges**

- When the luminosity and the pile-up increase, it is challenging to keep or even improve:
  - High momentum resolution
  - High IP resolution
  - High Track efficiency
  - Low Ghost rate
  - Fast pattern recognition

 $[\sigma(p)/p = 4 \times 10^{-3} \text{ at 5 GeV}/c]$ [20 µm at hight  $p_T$ ] [96% for long tracks] [~10%]

Fast pattern recognition is a key issue for the upgrade since it has to run in the software trigger.

#### The Current Tracking System



### The Upgrade Tracking System



### **VELO Options**

Pixel



- Square pixel  $55 \times 55 \ \mu m^2$
- VELOPix chip
- Channels 41×10<sup>6</sup>

Strip with (r, φ) sensors



- Inner pitch 30 µm
- SALT chip
- Channels 215×10<sup>3</sup>

### VELO Challenges at 40 MHz and $2 \times 10^{33}$ cm<sup>-2</sup>s<sup>-1</sup>

| Enlarge acceptance at high $\eta$ | Move closer to the beam<br>Inner aperture reduce from 5 to 3.5 mm                                                                      |
|-----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Irradiation dose                  | 370 Mrad or 8×10 <sup>15</sup> n <sub>eq</sub> /cm <sup>2</sup>                                                                        |
| Low material budget               | Sensor thickness 200 $\mu$ m<br>Thickness of the RF foil 300 $\rightarrow$ 150 $\mu$ m<br>CO <sub>2</sub> cooling using micro channels |
| High output data rate             | 2.8 Tbit/s (pixel)<br>2.4 Tbit/s (strip)                                                                                               |

• Decision on the VELO technology  $\rightarrow$  June 2013.

### **T** Stations Options

Large IT area

| OUTER TRACKER |     |  |
|---------------|-----|--|
| INNEI         | R   |  |
| TRAC          | KER |  |

- Si strips + straw tubes
- Increase the IT acceptance in order to reduce the OT occupancy below 20%
- Air cooling to reduce  $X/X_0$

#### Central Tracker



- 250 µm diameter scint. fibers
- 5 layers of fibers / module
- 2.5 meter long modules
- Readout by multi-channel SiPM, outside the acceptance

#### CT Challenges at 40 MHz and $2 \times 10^{33}$ cm<sup>-2</sup>s<sup>-1</sup>

Scintillating fiber detector never used with the conditions expected for the LHCb upgrade

| SiPM are sensitive to<br>neutron fluence          | 6 ×10 <sup>11</sup> n <sub>eq</sub> /cm² | Neutron shielding<br>Cooling at -40° |
|---------------------------------------------------|------------------------------------------|--------------------------------------|
| Fiber transmission degrades with irradiation dose | 26 kGy at 9 cm                           | Mirror on one side                   |
| Fiber position in <i>x</i>                        | 50 µm                                    |                                      |
| Module flatness                                   | ≤ 300 µm over 2.5 meters                 |                                      |

- The viability of the technology has been demonstrated from the point of view of the neutron fluence and the irradiation dose.
- Decision on the Tracker technologies  $\rightarrow$  September 2013

# Particle Identification Challenges

#### The PID System





#### RICH Challenges at 40 MHz and $2 \times 10^{33}$ cm<sup>-2</sup>s<sup>-1</sup>

40 MHz readoutMaPMT + ASIC (MAROC3 or CLARO)RICH1 occupancy

RICH 1 occupancy in the focal plan at  $2 \times 10^{33}$  – current optics:



### **RICH Options**



RICH 1 with new geometry

- Spherical mirror with larger r
- − Occupancy reduced  $0.3 \rightarrow 0.2$
- Decision  $\rightarrow$  June 2013

#### TRIDENT



- RICH1+2 gas radiator in a single vessel
- Gas radiators are separated by a quartz glass

# Data Processing Challenges

#### Data acquisition



Common readout board with different firmwares for timing and fast command distribution, slow control and data concentration.

### Event building at 40 MHz

#### Future DAQs

|       | Event-size [kB] | Rate [kHz] | Bandwidth [Gb/s] | Year |
|-------|-----------------|------------|------------------|------|
| ALICE | 20 000          | 50         | 8 000            | 2019 |
| ATLAS | 4 000           | 200        | 6 400            | 2022 |
| CMS   | 2 000           | 200        | 3 200            | 2022 |
| LHCb  | 100             | 40 000     | 32 000           | 2019 |

The main challenge is to build a cost-effective architecture for the event building (mixture of network and CPU)

#### Exploring:

- Merging readout unit and event builder in a single entity
- Ethernet / Infiniband / PCI express technologies
- Use of co-processors like GPGPUs or FPGA

#### HLT Challenges at 40 MHz and $2 \times 10^{33}$ cm<sup>-2</sup>s<sup>-1</sup>

- The limitation of the output rate at 20 kHz is strong requirement:
  - $b \overline{b}$  and  $c \overline{c}$  cross-sections increase with  $\sqrt{s}$
  - Output rate increases with  $\,\mathscr{L}\,$  and pileup
  - Good trigger efficiency for b and c-hadron decays

#### Exploring:

- Split the two stages of HLT in order to run them independently.
   This enables the deferral to disk of the HLT1 output, and delaying the HLT2 processing until after relevant calibrations become available.
- Optimize the code through improved vectorization where possible
- Perform some analyses on trigger information only
- Use of co-processors like GPGPUs to reduce the CPU load.

### Conclusions

- High precision measurements are the main road to better understand the flavor structure of the SM and to reveal NP.
- The performance of the current detector and the purity of the samples already accumulated gives confidence that measurements of very high sensitivity can be achieved.
- Challenging upgrade is in preparation.
   It is a good opportunity to join the LHCb collaboration.