

Charmonium at e⁺e⁻ colliders

XiaoLong Wang

VirginiaTech

11th Conference on Flavor Physics & CP Violation

Buzios, Rio de Janeiro, Brazil, 5/21/2013

Introduction to charmonium

- Below $D\overline{D}$ Very good agreement between theory and experiment.
- Above $D\overline{D}$ Many charmonium(-like) states found in the past ten years.
- XYZ particles Exotic properties! Their nature unclear. (QWG, Eur. Phy. J. C71, 1534(2011))

Eichten et al., Rev. Mod. Phys.80,1161(2008)

QWG, Eur. Phy. J. C71, 1534(2011)

Processes at e^+e^- colliders

1. ISR: a new e^+e^- collider at wide $\sqrt{s'}$ region.

2. Two photon process: a $\gamma\gamma$ collider.

3. B decay:

Outline

- 1. Update on $e^+e^- \rightarrow \pi^+\pi^- J/\psi$ via initial state radiation (ISR). BaBar, Lees *et al.*, Phys. Rev. D **86** (2012) 051102(R); Belle, Liu *et al.*, arXiv:1304.0121
- 2. Update on $e^+e^- \rightarrow \pi^+\pi^-\psi$ (2S) via ISR.

BaBar, Lees et al., arXiv:1211.6271

3. $e^+e^- \rightarrow \eta J/\psi$ via ISR.

Belle, Wang et al., Phys. Rev. D 87 (2013) 051101(R)

- 4. $\psi_2(1D)$ in $B \rightarrow (\chi_{c1}\gamma)K$. Belle, Bhardwaj *et al.*, arXiv:1304.3975
- 5. X(3915) in $\gamma\gamma \rightarrow J/\psi\omega$

Belle, Uehara et al., PRL104,092001(2010); BaBar, Lees et al., Phys. Rev. D 86 (2012) 072002

6. $\gamma\gamma \rightarrow \eta_{c}\pi^{+}\pi^{-}$

BaBar, Lees et al., Phys. Rev. D 86 (2012) 092005

$e^+e^- ightarrow \pi^+\pi^- J/\psi$ via ISR: Background

BaBar: First scan on charmonium, first observation of Y(4260)

125 ± 23 events, $M = 4259 \pm 8(stat)^{+2}_{-6}(syst) \text{MeV}/c^2$, $\Gamma = 88 \pm 23(stat)^{+6}_{-4}(syst) \text{MeV}$. Belle: First confirm on Y(4260), asymmetric line shape; enhancement around $4.0 \text{ GeV}/c^2$. Y(4008)???

BaBar: PRL95, 142001(2005).

Belle: PRL99, 182004(2007).

Both BaBar and Belle have finished the update with their full data samples.

$\psi(2S)$ reference sample at BaBar

Pure $\psi(2S)$ sample for reference; $M_{\pi^+\pi^- J/\psi}$ need to be corrected.

- $M_{\pi^+\pi^- J/\psi}$: $M_{data} = 3685.32 \pm 0.02 \text{ MeV}/c^2$, and $M_{MC} = 3685.43 \pm 0.01 \text{ MeV}/c^2$; while PDG12: $3686.09 \pm 0.04 \text{ MeV}/c^2$.
- $\sigma(M_{\pi^+\pi^-J/\psi})$ also corrected.

• Results of $\psi(2S)$: $N^{\text{sig}} = 20893 \pm 145$. $\Gamma(\psi(2S) \rightarrow e^+e^-) = 2.31 \pm 0.05(stat) \text{ keV}$ $(\Gamma^{\text{PDG}}(\psi(2S) \rightarrow e^+e^-) = 2.35 \pm 0.04 \text{ keV}).$

The high-mass tail to 4.0 GeV/ c^2 : good description to data. But: 4.0 GeV/ c^2 is 1000 full-widths beyond $m_{\psi(2S)}$.

BaBar, Lees et al., Phys. Rev. D 86 (2012) 051102(R)

Charmonium at e^+e^- colliders

$\psi(2S)$ and $\psi(3770)$ at Belle

- $M(\psi(2S)) = 3686.1 \pm 0.2 \text{ MeV}/c^2$ ($M^{PDG} = 3686.09 \pm 0.04 \text{ MeV}/c^2$)
- Mass resolution $\sigma = 4.8 \text{ MeV}/c^2$.
- σ(ψ(2S)) at Belle data samples:

	e^+e^-	$\mu^+\mu^-$	QED
$\sigma(\Upsilon(4S))$	$(14.12\pm 0.18\pm 0.85)~{\rm pb}$	$(15.09\pm 0.11\pm 0.79)~{\rm pb}$	$(14.25\pm0.26)~\rm{pb}$
$\sigma(\Upsilon(5S))$	$(13.79\pm 0.44\pm 0.83)~{\rm pb}$	$(13.33\pm 0.25\pm 0.70)~{\rm pb}$	$(13.42\pm0.25)~\rm{pb}$
$\sigma(\Upsilon(2S))$	$(16.75\pm 0.85\pm 1.01)~\rm{pb}$	$(16.63 \pm 0.54 \pm 0.87)~{\rm pb}$	$(16.03\pm0.29)~\rm{pb}$

- $\psi(2S)$ tail: exponential function
- $\psi(3770)$: *M* and Γ fixed to PDG values
- backgrounds: a linear term
- $N(\psi(3770)) = 54 \pm 20, 2.8\sigma.$

From 3.8 GeV/ c^2 to 3.95 GeV/ c^2 , only low and flat backgrounds. The contributions from the tails of $\psi(2S)$ and $\psi(3770)$ are negligible. We will see it's an important difference between BaBar and Belle.

Belle: Liu et al., arXiv:1304.0121

Charmonium at e^+e^- colliders

$M_{\pi^+\pi^- J/\psi}$ distributions

Something similar:

- Asymmetric lineshape at Y(4260)
- J/ψ sidebands estimate backgrounds well at > 4.6 GeV/ c^2 .
- Signal candidate events well above sidebands from $\psi(2S)$ to Y(4260)

BUT, distributions at (3.8,4.1) GeV/ c^2 are different.

- BaBar: "...might result from the $\psi(2S)$ tail and a possible J/ψ continuum contribution"
- Belle: a broad structure Y(4008) added to Y(4260) is the best description to data.

BaBar: PRD86,051102(R)(2012); Belle: arXiv:1304.0121

Fits on $M_{\pi^+\pi^- J/\psi}$

BaBar: $\sigma(M) = \sigma_{NY}(M) + \sigma_{BW}(M)$.

- σ_{BW} for Y(4260).
- σ_{NY} for the low-statistics non-Y(4260) contributions.
- Mass resolution (Gaussian) convolved.
- $M_{Y} = 4245 \pm 5(stat.) \pm 4(syst.) \text{ MeV}/c^{2}$, $\Gamma_{Y} = 114^{+16}_{-15}(stat.) \pm 7(syst.) \text{ MeV}$, $\mathcal{B}\Gamma_{e+e^{-}} = 9.2 \pm 0.8(stat) \text{ eV}$

Large difference on $\mathcal{B}\Gamma_{e^+e^-}$: different fit treatments.

BaBar: PRD86,051102(R)(2012)

Belle: Y(4008) + Y(4260).

• Two solutions of equal optimum fit quality, same mass, same width, different $\mathcal{B}\Gamma_{e^+e^-}$.

•
$$\chi^2/ndf = 101.6/84.$$

Parameters	Solution I	Solution II
$M(R_1)$	$3890.8 \pm $	40.5 ± 11.5
$\Gamma_{\rm tot}(R_1)$	254.5 ± 3	39.5 ± 13.6
$\Gamma_{ee}\mathcal{B}(R_1 \rightarrow \pi^+\pi^- J/\psi)$	$(3.8 \pm 0.6 \pm 0.4)$	$(8.4 \pm 1.2 \pm 1.1)$
$M(R_2)$	$4258.6 \pm$	8.3 ± 12.1
$\Gamma_{tot}(R_2)$	$134.1 \pm$	16.4 ± 5.5
$\Gamma_{ee}\mathcal{B}(R_2 \to \pi^+\pi^- J/\psi)$	$(6.4 \pm 0.8 \pm 0.6)$	$(20.5 \pm 1.4 \pm 2.0)$
ϕ	$59\pm17\pm11$	$-116\pm6\pm11$

Belle: arXiv:1304.0121

X. L. Wang (VT)

Charmonium at e^+e^- colliders

Not only Y(4260): $Z(3895)^{\pm}$

Belle: arXiv:1304.0121

- Dalitz plot of M²(π+π⁻) vs M²(π+J/ψ) for 4.15 < M(π+π⁻J/ψ) < 4.45 GeV/c².
- Inset: Background events in J/ψ sidebands.
- Structures both in $\pi^+\pi^-$ and $\pi^\pm J/\psi$ systems.
- MC simulation: open histograms, according to partial wave analysis with $f_0(500)$, $f_0(980)$, non-resonant S-wave, and $f_2(1270)$.

X. L. Wang (VT)

Charmonium at e⁺e⁻ colliders

+ data

-мс

42

Is it a real signal?

There are $f_0(600)$, $f_0(980)$ and non-resonant S-wave in $\pi^+\pi^-$. But they cannot reproduce the structure at 3.9 GeV/ c^2 in $\pi^{\pm}J/\psi$ (histogram).

Charmonium at e⁺e⁻ colliders

The $Z(3895)^{\pm}$ signal

- S-wave Breit-Wigner convolved with a Gaussian (7.4 MeV/c²).
- Significance: $> 5.2\sigma$
- Fit results:
 - $M = 3894.5 \pm 6.6 \pm 4.5 \,\mathrm{MeV}/c^2$
 - Γ = 63 ± 24 ± 26 MeV
 - Fraction in Y(4260) decays: (29.0 ± 8.9(stat.))%

- Couples to (cc̄).
- Has electric charge.
- At least 4 quarks.
- What's its nature?

$Z_c(3900)^{\pm}$ at BESIII

For more details, see Roy's talk.

- Data at a fix energy point of Y(4260).
- $M = 3899.0 \pm 3.6 \pm 4.9 \text{ MeV}/c^2$
- $\Gamma=46\pm10\pm20~\text{MeV}$
- Fraction = $(21.5 \pm 3.3 \pm 7.5)\%$
- First time of charged tetra-quark candidate observed outside Belle!

BESIII: arXiv: 1303.5949.

 $\pi^+\pi^-\psi(2S)$ via ISR

BaBar searched for Y(4260) in $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$, but instead, only Y(4360) observed.

B. Aubert et al., PRL98, 212001(2007)

Belle confirmed Y(4360), and observed a new structure Y(4660), which decays to $f_0(980)\psi(2S)$ dominantly.

Belle: PRL99,142002(2007)

Update on $\pi^+\pi^-\psi(2S)$ via ISR

BaBar: Lees et al., arXiv: 1211.6271

- The Y(4660) is confirmed.
- All results from $\psi(2S) \rightarrow \pi^+\pi^- J/\psi$ mode are in consistent with Belle results.
- $\psi(2S) \rightarrow \ell^+ \ell^-$ mode is studied, but it's a much worse sample with much high backgrounds.

$\eta J/\psi$ via ISR

- Via emitting η should have large partial width of hadronic transition of charmonium.
- Belle searches for $e^+e^- \rightarrow \eta J/\psi$ via ISR for the first time.
- $\eta \to \gamma \gamma / \pi^+ \pi^- \pi^0$, and $J/\psi \to e^+ e^-$ or $\mu^+ \mu^-$ in the reconstructions.

- $\sigma(\psi(2S)) = 13.9 \pm 1.4$ pb in $\eta \to \pi^+ \pi^- \pi^0$ mode; $\sigma(\psi(2S)) = 14.0 \pm 0.8$ pb in $\eta \to \gamma \gamma$ mode. The expectation: $\sigma(\psi(2S)) = 14.7$ pb.
- Clear $\psi(4040)$ and $\psi(4160)$, but no Y state found! Really Y???

Belle: Wang et al., PRD87, 051101(R)(2013).

X. L. Wang (VT)

Charmonium at e⁺ e⁻ colliders

- This is the first time to found ψ states in charmonium transition! $> 6.0\sigma$ for $\psi(4040)$; $> 6.5\sigma$ for $\psi(4160)$.
- Large $\mathcal{B}(\psi \to nJ/\psi)!$ ۲ $\mathcal{B}(\psi(2S) \to \eta J/\psi) = (3.28 \pm 0.07)\%$
- Unlike $\pi^+\pi^-$ transition, no significant Y signal!!!
- Fit with parameters of $\psi(4040)$ and $\psi(4160)$ • free, first time in an exclusive channel:
 - $\psi(4040)$: $M = 4012 \pm 5 \,\mathrm{MeV}/c^2$, $\dot{\Gamma} = 54 + 13 \text{ MeV}.$
 - $\psi(4160)$: $M = 4157 \pm 10 \text{ MeV}/c^2$, $\Gamma = 84 + 20 \text{ MeV}.$

```
Solution I
Parameters
M_{\psi(4040)}
                                                        4039 (fixed)
\Gamma_{\psi(4040)}
                                                         80 (fixed)
\mathcal{B} \cdot \Gamma_{c^+c^-}^{\psi(4040)}
                                4.8 \pm 0.9 \pm 1.5
                                                                        11.2 \pm 1.3 \pm 2.1
M_{\#(4160)}
                                                        4153 (fixed)
                                                         103 (fixed)
\Gamma_{\psi(4160)}
```

 $4.0 \pm 0.8 \pm 1.4$

 $336 \pm 12 \pm 14$

 $\eta J/\psi$ via ISR

 $\mathcal{B} \cdot \Gamma^{\psi(4160)}$

 $\Gamma_{e^\pm e^-}(\psi(4040)) = (0.86 \pm 0.07) \text{ keV from PDG} \rightarrow$ $\mathcal{B}(\psi(4040) \rightarrow \eta J/\psi) = (0.56 \pm 0.10 \pm 0.18)\%$ or $(1.30 \pm 0.15 \pm 0.26)\%$. $\Gamma_{e^+e^-}(\psi(4160)) = (0.83 \pm 0.07) \text{ keV from PDG} \rightarrow$ $\mathcal{B}(\psi(4160) \rightarrow \eta J/\psi) = (0.48 \pm 0.10 \pm 0.17)\%$ or $(1.66 \pm 0.16 \pm 0.29)\%$ The $\Gamma(\psi \rightarrow \eta J/\psi)$ is about 1 MeV.

Solution II

 $13.8 \pm 1.3 \pm 2.1$

 $251 \pm 4 \pm 7$

Meanwhile, no $\psi(4040)$ or $\psi(4160)$ in $\eta J/\psi$ seen in $B \to K + \eta J/\psi$.

X. L. Wang (VT)

Charmonium at e⁺ e⁻ colliders

16 / 28

shown.

The $\sigma(e^+e^- \rightarrow \pi^+\pi^- J/\psi)$ at Y(4260), $\sigma(e^+e^- \rightarrow \pi^+\pi^-\psi(2S))$ at Y(4360) and $\sigma(e^+e^- \rightarrow \eta J/\psi)$ at $\psi(4040)$ are almost the same.

Belle: Wang et al., PRD87,051101(R)(2013).

Charmonium at e⁺e⁻ colliders

E.... (GeV)

Y, why?

The current situation is amazing:

- Assume a ψ ? above 4 GeV/c²:
- $\begin{array}{l} \mathcal{B}(\psi^? \to \pi^+\pi^-\psi(2S)) > \mathcal{B}(\psi^? \to \pi^+\pi^-J/\psi) >> \mathcal{B}(\psi^? \to \eta J/\psi), \text{ and} \\ \sigma(e^+e^- \to f) = \sigma(e^+e^- \to \psi^?) \times \mathcal{B}(\psi^? \to f), \text{ so} \\ \sigma(e^+e^- \to \pi^+\pi^-\psi(2S)) > \sigma(e^+e^- \to \pi^+\pi^-J/\psi) >> \sigma(e^+e^- \to \eta J/\psi). \text{ However,} \\ \text{they are at SAME order! Why?} \end{array}$
- Why no Y at $\eta J/\psi$? Why no ψ (4040/4160/4415) at $\pi^+\pi^- J/\psi$ or $\pi^+\pi^-\psi$ (2S)? Y states from interference?
- In $\pi^+\pi^- J/\psi$, state from $\pi^\pm Z(3895)^\pm$ is the same as state from $\pi^+\pi^- J/\psi$ (no $Z(3895)^\pm$ component)? Does it happen to be? Or not?
- Why $\mathcal{B}(\psi(4040/4160) \rightarrow \eta J/\psi)$ so large? Or it's only enhancement in $\eta J/\psi$?
- What is Y(4660)? Why $f_0(980)\psi(2S)$ dominates in Y(4660) decay?
- Lineshapes of $\psi(4040)$ and $\psi(4160)$ different in inclusive decays and exclusive decays? Or not?
- Is $Z(3895)^{\pm}$ like charged Z_b ?

$B \rightarrow \chi_{c1} \gamma K$ and $B \rightarrow \chi_{c2} \gamma K$

- $\chi_{c1}\gamma$ and $\chi_{c2}\gamma$: suitable final state to look for either *C*-odd partner of *X*(3872) or unseen charmonium.
- Theory predict ${}^{3}D_{2}$ ($c\bar{c}$) state to lie around 3810 3840 MeV/ c^{2} mass and be narrow.

 $\Gamma(\psi_2 \rightarrow \chi_{c1} \gamma) = 260 \text{ keV}$

- There should be $^{3}D_{3}$ $(c\bar{c})$ state lying around $3830-3880~{\rm MeV}/c^{2}$ mass.

 $\Gamma(\psi_3 \rightarrow \chi_{c2}\gamma) = 286 \text{ keV}$

name	spect.	J^{PC}	M _{exp} 1	M _{model} [MeV]	$\frac{\text{dominant}}{\text{decay}}$
η_{c2}	$1^1 D_2$	2-+		3780-3840	η _c ππ
ψ"	$1^{3} D_{1}$	1	3772.9(4)	3785-3819	$D\overline{D}$
Ψ_2	$1^3 D_2$	2		3800-3840	$\chi_{c1,2}\gamma$
Ψ3	$1^{3}D_{3}$	3		3810-3850	$D\overline{D}^{(*)}$

S. Godfrey & N. Isgur, PRD32, 189(1985); E. Eichten et al., PRL89,162002(2002), PRD69,094019(2004)

Belle: Bhardwaj et al., arXiv: 1304.3975

Charmonium at e^+e^- colliders

 $\psi_2 \rightarrow \gamma \chi_{c1}$

• No X(3872) C-odd partner found.

- X(3823) significance > 3.8σ w/syst. First evidence from Belle!!!
- $M = 3823.1 \pm 1.8(stat.) \pm 0.7(syst.) \text{ MeV}/c^2.$
- $\Gamma(\psi_2) = 1.7 \pm 5.5 \text{ MeV}/c^2$ if fitted.
- $\frac{\mathcal{B}(X(3823 \to \chi_{C2}\gamma))}{\mathcal{B}(X(3823 \to \chi_{C1}\gamma))} < 0.41 @90\% \text{ C.L.}$

X(3823) seems to be the missing ψ_2 from the charmonium spectrum.

No obvious signal found in $\chi_{c2\gamma}$, except $\psi(2S)$.

Belle: Bhardwaj et al., arXiv: 1304.3975

Study of $\gamma \gamma \rightarrow \omega J/\psi$

- $M(X(3915)) = 3914 \pm 3 \pm 2 \text{ MeV}/c^2$.
- $\Gamma(X(3915)) = 23 \pm 10^{+2}_{-8} \text{ MeV}/c^2.$
- Significance is 7.8 σ . $N^{sig} = 55 \pm 14^{+2}_{-14}$.
- No obvious $\gamma\gamma \rightarrow X(3872) \rightarrow \omega J/\psi$ found.

Belle: Uehara et al., PRL104,092001(2010)

X. L. Wang (VT)

$\underset{\text{BaBar: Lees et al., PRD86,072002(2012).}}{\text{Study of }\gamma\gamma \to \omega J/\psi}$

- Confirm Belle's measurement on X(3915), using 519 fb⁻¹ data.
- Significance: 7.6σ w/ syst.
- $M_{X(3915)} = (3919.4 \pm 2.2 \pm 1.6) \text{ MeV}/c^2$
- Γ_{X(3915)} = (13 ± 6 ± 3) MeV
- No obvious $\gamma \gamma \rightarrow X(3872) \rightarrow \omega J/\psi$ found.

 $J^{PC} = 2^{-+}$ has been ruled out for X(3872) by LHCb (8.4 σ), see Tomasz Skwarnicki's talk.

Study of $\gamma\gamma \rightarrow \eta_c \pi^+\pi^-$ at BaBar

Predictions :

$$- \Gamma(\eta_c(2S) \to \eta_c \pi^+ \pi^-) / \Gamma(\psi(2S) \to J/\psi \pi^+ \pi^-) = 2.9$$

That is $\mathcal{B}(\eta_c(2S) \to \eta_c \pi^+ \pi^-) = (2.2^{+1.6}_{-0.6})\%$

Mod. Phys. Lett. A 17 (2002) 1533

Then

- If $X(3872) \equiv \eta_{c2}$ (1¹ D_2 , $J^{PC} = 2^{-+}$),
- then $\mathcal{B}(X(3872) \to \eta_c \pi^+ \pi^-) > \mathcal{B}(X(3872) \to J/\psi \pi^+ \pi^-)$ (Int J. Mod. Phys A 20 240 (2005))

$$- \Rightarrow$$
 what about $X \rightarrow \eta_c \pi^+ \pi^-$?

Study of $\gamma \gamma \rightarrow \eta_c \pi^+ \pi^-$ (BaBar)

- 473.9 fb⁻¹ data used, and $\eta_c \to K_S^0 K^+ \pi^-$.
- No evidence for $\gamma\gamma$ production of X(3872), X(3915) nor $\chi_{c2}(2P)$.

•
$$\frac{\mathcal{B}(\chi_{C2}(1P) \to \eta_C \pi^+ \pi^-)}{\mathcal{B}(\chi_{C2}(1P) \to K_S^0 K^+ \pi^- + c.c.)} = 14.5^{+10.9}_{-8.9} \pm 7.3 \pm 2.5, \mathcal{B}(\chi_{C2} \to \eta_C \pi^+ \pi^-) < 2.2\%$$

- $\frac{\eta_{C}(2S) \to \eta_{C} \pi^{+} \pi^{-}}{\eta_{C}(2S) \to K_{S}^{O} K^{+} \pi^{-} + c.c.} = 4.9^{+3.5}_{-3.3} \pm 1.3 \pm 0.8, \ \mathcal{B}(\eta_{C}(2S) \to \eta_{C} \pi^{+} \pi^{-}) < 7.4\%$
- $\Gamma_{\gamma\gamma}(X) \cdot \mathcal{B}(X \to \eta_c \pi^+ \pi^-) < 11.1/16/19 \text{ eV for } X(3872)/X(3915)/\chi_{c2}(2P)$

BaBar: Lees et al., PRD86,092005(2012)

X. L. Wang (VT)

Charmonium at e^+e^- colliders

Summary

- 1. Update on $e^+e^- \rightarrow \pi^+\pi^- J/\psi$ via ISR at BaBar doesn't confirm Y(4008).
- 2. In the same update, Belle observes a charged structure $Z(3895)^{\pm}$ in $M_{\pi^{\pm}J/\psi}$ in Y(4260) decays. Same structure observed at BES III.
- 3. Update on $e^+e^- \rightarrow \pi^+\pi^-\psi(2S)$ via ISR at BaBar confirms the Y(4660).
- 4. Scan on $e^+e^- \rightarrow \eta J/\psi$ via ISR at Belle shows obvious $\psi(4040)$ and $\psi(4160)$ signals in the final states. Not like in $\pi^+\pi^-$ transition, no Y(4260/4360/4660) state seen.
- 5. $\mathcal{B}(\psi(4040/4160) \rightarrow \eta J/\psi$ are at 1% level, the partial widths are about 1 MeV.
- 6. X(3823) observed in $B \rightarrow K + \chi_{cJ}\gamma$ by Belle, should be ψ_2 state.
- 7. X(3915) observed at Belle in $\gamma\gamma \rightarrow \omega J/\psi$, and confirmed by BaBar. No X(3872) found in the process.
- 8. $\gamma\gamma \rightarrow \eta_c \pi^+ \pi^-$ scanned by BaBar, no evidence for production of X(3872), X(3915) nor $\chi_{c2}(2P)$.

Thank you!

Back-up

Selection criteria of $e^+e^- \rightarrow \pi^+\pi^- J/\psi$ via ISR

Both updates from BaBar and Belle finished. Here some comparisons are listed. Selection criteria at Belle Selection criteria at BaBar:

- $N_{trk} = 4$, $Q_{pot} = 0$.
- J/ψ reconstruction from e^+e^- and $\mu^+\mu^-$.
- Vertex fit to e^+e^- interaction region; kinematical constraint to $m_{J/\psi}$.
- For $\pi^+\pi^-$: $J/\psi + \pi^+\pi^-$ vertex fit again, at least one pion identified, and neither satisfy eID.
- Missing mass to consist with $\gamma_{\rm ISB}$: $-0.5 < M_{\rm rog}^2 (\pi^+ \pi^- J/\psi) < 0.75 \, ({\rm GeV}/c^2)^2$
- γ -conversion bkg: $M_{e^+e^-} > 50 \text{ MeV}/c^2$ for $\pi^+\pi^-$.
- Transverse component of missing momentum: $P_{\star}^{miss}((\gamma_{ISB})\pi^{+}\pi^{-}J/\psi) < 2.25 \,\text{GeV}/c.$

- dr < 0.5 cm, |dz| < 4.0 cm, $P_t > 0.1 \text{ GeV}/c$ for good charged track. $N_{trk} = 4$ and $Q_{pot} = 0$.
- e-ID and μ -ID, and J/ψ reconstructed from e^+e^- or $\mu^+\mu^-$.
- $\pi\text{-ID}$ for both $\pi^+\pi^-$, and $\mathcal{R}_{\varTheta} < 0.75$ and $M_{\pi^+\pi^-}$ to remove γ -conversion bkg.

•
$$-2 < M_{\rm rec}^2(\pi^+\pi^-J/\psi) < 2\,({\rm GeV}/c^2)^2$$
 for $\gamma_{\rm ISR}$.

Differences: vertex fit, mass constrain, one pion ID, and P_{τ}^{miss} at BaBar. Belle selection criteria are verv simple.

Study of $\gamma \chi_{c1}$

- $B^+ \rightarrow \gamma \chi_{c1} K^+$ with $\chi_{c1} \rightarrow \gamma J/\psi$ using $772 \times 10^6 B\overline{B}$.
- Efficiency and resolution improve with increasing $M_{\gamma\chi_{c1}}$

- $M_{\gamma\chi_{c1}}$ in data agree with inclusive MC simulation, except for the peak at 3.82 GeV/ c^2 .
- Missing $\psi_2(1^3D_2)$ charmonium? Mass agrees with prediction.