

HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI

Manufacturing of void-filled Cu samples for breakdown experiments in the DC spark setup

Anders Korsbäck, Tommy Ahlgren

Motivation

Simulation work (Aarne Pohjonen, Stefan Parviainen) suggests that voids under the surface of the cathode are a significant cause of breakdown

This result can be tested empirically in the DC spark setup if we have samples with voids

We are manufacturing samples in Helsinki:

- He ions implanted into the sample by irradiation (done!)
- He is nucleated into bubbles and then removed through annealing, leaving behind voids
- The successful creation of voids is confirmed through positron annihilation spectroscopy

Anders Korsbäck, University of Helsinki, Department of Materials Physics

Irradiation

Relationship between implantation depth and ion energy was studied with SRIM:

SRIM simulation of He ion implantation into Cu sample, ion energy of 30 keV

Irradiation of samples was conducted using ion energy of 30 keV, dose chosen to yield 5 at% He at most common stopping range

Each of the 12 samples had half of it masked with aluminium tape to provide a control sample

Annealing (planned)

Implanted He tends to form small (<10 atoms) clusters around metal lattice vacancies

Significant diffusion needed to make He nucleate into bubbles, as well as leave sample

Annealing likely needed

Plan: Leave 4 samples un-annealed, anneal the rest using lowest reasonable temperature (to prevent blistering)

Use positron annihilation spectroscopy to verify successful manufacture of voids

Anders Korsbäck, University of Helsinki, Department of Materials Physics