b'-quarks @ b4

Dennis, <u>Geert-Jan</u>, Giovanni, Huilin, Liza, Lucia, Michela, Rogier

Questions

 Under which circumstances is a fourth generation still allowed?

 If a b'-quark is discovered at 850 GeV/c², what experiment would you perform to study its properties?

Part I the physics

Ancient LEP results: Only 3 generations of neutrinos

- "Normal" neutrinos lighter than m_z/2 are disallowed from LEP (Z lineshape)
- Window between
 m_z/2 and m_H/2 open
- Above m_H/2:
 depends on Higgs model

SM with 4 generations (SM4)

The simplest model accommodating the 4th generation quark

- SM + 1 chiral family of fermions
- one Higgs doublet
- Yukawa couplings
- Dirac neutrinos

Disfavored by current experimental observations!

Higgs doesn't like 4th gen quarks

How the Higgs production cross section changes:

- In the SM, the dominant Higgs production process is the gluon-gluon fusion process (Fig 1)
- In a fourth generation with two additional heavier quarks (Fig 2), the Higgs production cross section is enhanced wrt SM (Fig 3) up to a factor ~ 9

Higgs still doesn't like 4th gen

How the Higgs branching ratios change:

- in the case of a light neutrino, the Higgs boson will also decay into a neutrino pair and the branching ratio
 BR(H → v'v⁷) can be sizable enough to suppress the rates for the visible channels
- the rates for the H → ZZ and H → γγ decays are strongly suppressed by a factor that is larger than the one which enhances the gg → H cross section.

Higgs still doesn't like 4th gen

Bottom line: results cannot accommodate SM4

So what is allowed?

The SM4 can survive with small modifications if

- we extend Higgs sector, e.g. 2 Higgs doublets (2HDM)
 - allows us to save chiral SM4 (4th generation decoupled from others)

and/or

- the additional quarks are vector-like (VLQs)
 - no Higgs mechanism required for mass generation of such quarks

Two Higgs Doublet Model

- LHC Higgs results exclude chiral 4th gen.
 only holds for SM Higgs (single doublet) !!!
- More complex Higgs sector possible, e.g. two Higgs doublets (2HDM)
- Effects on electroweak and flavor physics, e.g.:

Two Higgs Doublet Model

- Consequences discussed in http://arxiv.org/abs/1208.3195
- Two Higgs doublets coupling to 'light' and 'heavy' fermions
- Assuming 2HDM:
 - 4th gen. still fits to electroweak and flavor observables
 - 4th gen. viable with recent Higgs results !!!

Vector-like quarks (VLQ)

- Vector-like fermions have their left and right components transforming in the same way
- ullet The $\psi_L \psi_R$ mass terms are not forbidden by symmetry
- The resonances associated to such Lagrangian terms do not affect the current formulation of the theory, but intervene merely as a higher order NP effect

Vector-like quarks (VLQ)

 Once produced, vector-like fermions are expected to decay by the exchange of Z, W and H, with decay rates and modes almost completely constrained by the fact that the phase space that does *not* affect the SM is small.

• Down-like 4th generation quarks should appear as a $b^\prime b^\prime$ state with

$$b' \to t (\to bW)W$$

Part II the experiment

Look, a b'-quark!

The b'-factory

- Produce many b'-quark pairs
- Do so in a clean environment

lepton collider!

- low background
- knowledge of initial energy
- tuneable center of mass energy

Requires: center of mass energy = 1700 GeV

Ready made plans:

Choosing a building site: North Stradbroke Island

Perfect ...

- ... size (38 km)
- … climate
- ... beaches
- ... travel options

Unfortunately, hardly any nightlife

Detector Concept*: b4

Detector Subsystems

- Vertex detector/Tracker: Silicon pixels/strips
- EM calorimeter: Silicon/Tungsten
- Hadron Calorimeter: RPC/Steel
- Magnet: 5T solenoid
- Muon system: Scintillator/Steel

Detector design optimized for "Particle Flow" calorimetry. (highly segmented, etc.)

The "Particle Flow Algorithm"

- conventional: E_{jets} = E_{ECAL} + E_{HCAL}
- particle flow: use superior resolution of tracker to measure energy of charged particles --

$$E_{jets} = E_{tracks} + E_{\gamma} + E_{n}$$

can balance total event energy

"total missing energy"

Analysis strategies, 1

an analog b'-detector:

energy resolution... not great.

Analysis strategies, 2

- e⁺e⁻ → Z → b'bbar' → tW tbarW
- search in all-hadronic channel, to make use of the excellent energy resolution of the detector
 - each tW:b + (had.) + (had.)

top decays

Summary

- Barely any scenarios left that allow for a b'-quark
- Should we discover one, we need a linear collider to study its properties
- CLIC is eminently suitable for this purpose by virtue of its design energy
- The SiD detector is an excellent example of the kind of detector we would need for precise measurements of the properties of a b'-quark

Credits

- Dennis
- Geert-Jan
- Giovanni
- Huilin
- Liza
- Lucia
- Michela
- Rogier

Backup slides

Why we need a dutch mountain

Please ask Stefan (in the audience)

And now: beer

Or what?

