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Kinematics of On/Off Axis Beams
Source: hep-ex/0111033

;M+

» Conserve 4-mometum in the pion rest frame and the lab frame

» Boost to the lab frame: mi =m2 —2E¥*m,
pu, = (E,,E sin8,0,E, cosb)

= (vE,;(1+ Bcosh*), E)sin0*,0,E; (B + cos0))



» Using the components Zﬁ can get the relationship
V3
E} sin 0* E; sin 0™
~YEX(B +cos6*) E,
» We assume an ultra-relativistic neutrino where 5 ~ 1

» Now we can get neutrino energies as a function of pion
energies and angle 6 with which the beam is off-axis

tanf =

Er _ E,
m;  Ex(1+ cos6*)

’}/:

Where:

E2
cos 0" ~ \/1 — E:2 tan2 6

v

E* = 30MeV
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This graph of the neutrino flux vs. the parent pion energy show
how the neutrino flux peaks as the off axis angle is increased.



Off-axis tunes event rates

From NOvA : arxiv.org/0503053
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Fig. 4.4: CC v, event rates expected under a no-oscillation hypothesis at a distance of 800 km from Fermilab and at
various transverse locations for the NuMI low-energy beam configuration (left) and medium-energy beam configu-
ration (right).



Putting Off-Axis Flux and Event Probabilities Together
From T2K: arxiv/1211.0469v3
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FIG. 1: Muon neutrino survival probability at 295 km
and neutrino fluxes for different off-axis angles.



Picking L/E For Tests of CPV

» Want a medium baseline experiment to eliminate matter
effects which are dependent on the hierarchy
- K2K or T2k

» Can look at vacuum oscillations v, — v and tune L/E to the

points in the spectrum where the probability differences are
the largest for different CP phases
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» For the choice of L

for the detector, tune ¥
the off-axis angle to _ ot AV A 7 \/ M
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It has been suggested (arXiv:1301.4333) that the CP asymmetry
given by PPaX — P& may be a good diagnostic for CP phase

VpVe Vp Ve
sensitivity.
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Picking L/E For Tests of MH

» Need Large L/E
» Search for v appearance from a v, source

» CP effects are then small corrections to MH effects
» NOvA and LBNE
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The difference between NH and IH at the first oscillation
maximum becomes more distinct as L increases. NOvA and the
LBNE are experiments that have the baseline to make this type of
measurement. NOvrA benefits from off-axis spectrum tuning
because it has a shorter baseline than LBNE which is on axis.



v events: some are better than others. CC vs. NC

» More neutrino events is the
name of the game for dcp
and MH experiments. But,
not all neutrino events are
"good”
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» Charged current events do
not have a neutrino as their
end product: — collecting
all the energy in the event
will be easier — Better
energy reconstruction 1r

Cross sections (x10°%cm?)
N w

Charged-Current Quasi-Elastic
(CCQE)

» CC has a lepton as a
product: can tag the
neutrino and determine if u
or e — will result in better
analysis with smaller
systematics
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NC: v scatters off something (proton, electron, ...)

In a Cherenkov detector: only an e-like signal could be produced.
— But this e event could just as well have come from a muon NC
eventln a LAr detector:

Can detect "all" NC events

More details on event because of tracking!

Argon atoms are big and complicated! Need to better study what
Is going on in the nucleus

Zoom
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v events: some are better than others. QE and the rest

Furthermore, not all CC events
are nice:

§1.4
Higher energy v s will undergo }E,'-z
more complex interactions. %0;
Detectors cannot interpret very %06
well what is going on with fo.
non-QE events. §°'2
—> energy not reconstructed ’
correctly
CC QE: Resonant m Production:

v+ n—u +p v+ N—=p + N = pu” +7+ N



Beam Composition
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As 6 varies the composition of the beam is changing as well.

Ve product of secondary decays — kinematics are different —
spectrum changes differently than v,;s

A change in ratio ve/v,, of a few % can have large consequences.
Posc small — 10 osc / 100 bkgd very different from 10 osc / 50
bkgd.



Pros and Cons: Summary

Off-Axis: On-Axis:

» Lower v backgrounds. > Larger v flux.

I » Not a counting experiment
» Can only measure oscillation & €xXp

at a single value of L/E (or (shape fitting).

requires multiple detectors). > Requires good energy
resolution: Resolving E is

necessary for figuring out
L/E. Lower resolution of E
makes it harder to determine
oscillations.

» Fewer high energy events
(less complicated
interactions, fewer NC
events).
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v s of the future: superbeam

This is the Intensity, not the Energy frontier! Large Energy vs not
needed or desired because:

- Can always change L

- In a v, beam, at large E,, intrinsic v, fluxes are higher

- Large E neutrinos lead to more complicated interactions

— in fact, as shown previously, one would like to keep the v energy
to less than 2 GeV

The main problem with off-axis experiments is that while they may
be at the sweetspot for oscillations, the v flux is much smaller.

— can compensate this by using a high-intensity beam —
SuperBeam!

To get the v intensities needed need a few MW beam power.

— Project-X 17



v s of the future: v factory

A Superbeam is a more powerful and more expensive version of
what we already know how to build.

Another option is a different type of v source: muon accelerator.
Muons produced in the same way as for a ¥ beam, but then
captured and accelerated in circular accelerator. Do this FAST!
Then let muons decay...

Can capture u and p~. What is so nice about this?

pt — et +ve + 7, — 50% ve, 7,

p- — e +v,+ve = 50% v, Ve

— Great for oscillations!

Intrinsic backgrounds from beam ~ 10~* effect, not 1% — more
sensitive

Can do muon appearance, not electron appearance — bkgd further
reduced

*¥**%SO MUCH MORE PHYSICS!HTH*x*



From NOvA : arxiv.org/0503053
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Fig. 4.5: Simulated energy distributions for the v, oscillation signal, intrinsic beam v, events, neutral-current
events and v charged-current events with and without oscillations. The simulation used Am; =25x107 eV,
sin*(20,,)=1.0,, and sin*(20 ,) = 0.04. An off-axis distance of 12 km at 810 km was assumed.




How to Decide: Detector Technology

Liquid Argon: Cherenkov Light:

Great tracking capabilities

— can distinguish events well
Energy deposition (dE/dx)

— good energy reconstruction
New technology: needs testing to
see how good it can perform Can
it be expanded to huge
experiments?

We know how to cover huge
areas with PMTs
Backgrounds hard to reduce
— need large statistics



How to Decide: What v sources?

Need one or more L/E. Can set E by

1) changing proton E

2) change beam angle

L is variable for surface experiment (crazy!). Otherwise set by
available mines/excavation cost.

Available beams:

- Cern Neutrino to Gran Sasso: 4.5 x 1019 POT /year @ 400 GeV
- NuMI: 2 x 1020 POT /year @ 8 GeV (upgrades can bring POT up
x2)

-J-PARK: 1.44 x 10?0 POT /year @ 30 GeV then upgraded to 50
GeV

Future:

- Projext X

- muon collider



LBL Experiments

Name BL Enu (GeV) PS Energy (GeV) L (km) Theta
NOVA LBL 2 120 810 15 mrad
T2K LBL 0.6 50 295 2-3 deg
K2K LBL 1.2 12 250 0
OPERA LBL 17 400 730 0
MINOS LBL 3.3 120 735 0
LBNE (future) LBL 1-10 60-100 1300 0

miniBooNE  LBL ~1 8 450 33.5 mrad



NOvA: L =810 km, # = 14 mrad
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T2K: L =295 km, € = 44 mrad
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K2K: L =250 km, 8 = 0 mrad
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OPERA: L =730 km, & = 0 mrad
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MINOS: L =735 km, € = 0 mrad
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LBNE: L = 1300 km, € = 0 mrad
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miniBooNE: L = 450 km, & = 34 mrad
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