
Author - Title (Footer) 1

How can a detector saturate a 10Gb

link through a remote file system

• The requirements we have focused on:

• Dedicated machine for buffering detector’s data and for fast online

processing

• Sufficient storage to hold 2 days of experiments data (for the

weekend)

• link from online data processing PC to central storage to write or

read results

• list 10000 files < 3s

Author - Title (Footer) 2

Issues we are facing

• Detectors seen as a single threaded process:

No Parallelization possible

• Writing and reading from the same disks has high impact

on disk performance.

• Difficult to prioritize clients accessing the same remote

filesystem.

Author - Title (Footer) 3

Remote file systems tested and fine tuning

• On the hardware side:

• Raids cards

• Network cards

• On the system side:

• Linux flavors: centos, redhat, debian, ubuntu.

• Virtual memory or tcp fine tuning

• On the block side:

• File system types: xfs, ext4

• Network block device or iscsi

• On the file side:

• CIFS, NFS (2,3,4)

Author - Title (Footer) 4

The hardware choosen

• The machine choosen (DELL R720xd) has:

• 24 drives for a total capacity of 20T

• 2x6 cores

• RAM will depend on the needed transfer rate (ramdisks)

• Up to 6x10Gb optical links

• Local write speed with ext4 raid6:

> 1200 MB/s

Author - Title (Footer) 5

Results

• They are bad !!

• Block devices (ndb and iscsi) gives the best results

Around 500 or 600 MB/s with 6MB files

But not as flexible as NFS and still under 1GB/s

• CIFS, NFS reach 400 MB/s in best cases …

• Parallel file system are more complex to deal with.

Not because of their own complexity, but because we deal with a

wide variety of detectors, and most of the time installing a heavy

client like the GPFS one is a problem.

Moreover we have been told that performance for a single

threaded application is not that good (below 1GB/s) (not tested)

Author - Title (Footer) 6

The HTTP case

• We have implemented our own solution.

• 2 Channels as this is done in FTP

Author - Title (Footer) 7

The HTTP case

• Step1: Detector tells when a file is finished to be written

and ready to be transferred.

Author - Title (Footer) 8

The HTTP case

• Step2: we parallelize file transfers with persistent http

connections

Author - Title (Footer) 9

The HTTP case

• Step3: once transfer is done, we remove files from the

detector.

Author - Title (Footer) 10

Optimisations (Linux)

• On the detector side:

• Ramdisk to have a minimum impact on disk perf.

• Lighttpd for efficient http transfer with minimal memory footprint

• Inotify to know when a file is fully written (sadly not available in

windows world).

• Daemontools to monitor all this.

• On the Local Buffer side:

• Unix named pipes to implement FIFO queues.

• Libcurl to get files through http and keep connection opened.

• Ionice to prioritize down sync to central storage.

• Daemontools to monitor all this.

Author - Title (Footer) 11

Optimisations

• Python “twisted” : an event-driven networking engine.

• Pretty fast engine

• Used on the control channel (linux AND windows)

• Thread safe, and can handle multiple clients

Author - Title (Footer) 12

Results and advantages

• With 1 link we almost reach the limit: 900MB/s.

we need to keep some bandwith for recovery purpose.

• With 2 links we reach the local buffer raid card limit:

1200MB/s.

• Advantages:

• As this is an asynchronous transfer, we can break the link and

reboot the local buffer while acquisition is on going.

Ramdisk should be big enough on detector !!

• Compared to NFS client it is much lighter !

40 to 50% of 1 cpu at 900MB/s whereas NFS consumes more

CPU and generates more IOwaits at much lower data rates.

Author - Title (Footer) 13

Interoperability / Road map

• Windows 7 (32/64 bits) version for the client.

• Local buffer machine will still be on Linux

• Local buffer machine should be able to talk to linux/windows

detectors without modification

• Easy switch in case of local buffer failure.

• Online data analysis on local buffer machine

• Data flow inside the machine so we can use ramdisks

• Keep central storage in sync

• Strategy for Raw/Temporary/Computed data

• Backup Strategy

• Ability to gather data from 2 or more detectors.

Author - Title (Footer) 14

Road map

• Requirements not implemented yet:

• mount user storage on online data processing PC (probably

impossible: LBS must insure aquisition !)

• automatic export of analysed data to user's export medium.

(need to compare the 20MB/s of a USB2 drive, and 1GB/s of the

detector ...)

Author - Title (Footer) 15

THANKS !

Author - Title (Footer) 16

