

Superconducting cavity developments for the next generation of ISOL facilities (HIE ISOLDE)

Walter Venturini Delsolaro (CERN BE-RF-SRF)

ENSAR/NA3 Meeting, 28/29 May 2013

Acknowledgement

This presentation is based on the work of many people at CERN and outside. It would be very difficult to acknowledge all contributions singularly without forgetting anybody.

Particular thanks to S. Calatroni and the CERN coating team; to G. Bisoffi, E. Palmieri, A. Porcellato, S. Stark and the INFN-LNL staff, and to S. Bousson and the IPN cavity testing team in Orsay

Overview

> Technologies for superconducting quarter wave resonators

- > Nb sputter cavities
- Nb-Cu sputtered QWR at LNL-INFN for the ALPI Linac
- The HIE ISOLDE project, Nb-Cu sputtered QWR at CERN
- Latest results of HIE ISOLDE cavities

Technologies for SC QWR

Bulk Nb with high RRR and EB welds

- Available from industry:
- High gradients at low dissipated power are easier
- Difficulties in operation (microphonics, high RF power needs)
- Nb clad- copper
 - External conductor in N-Cu, shaft in bulk Nb
 - High performances (sensitive to Q disease)
- Superconducting coatings (mechanical and thermal stability, lower cost)
 - Electroplating of Pb on Copper
 - Limited to few MV/m due to low B_c of lead
 - Might still be interesting for complicated shapes
 - Nb sputtering on copper

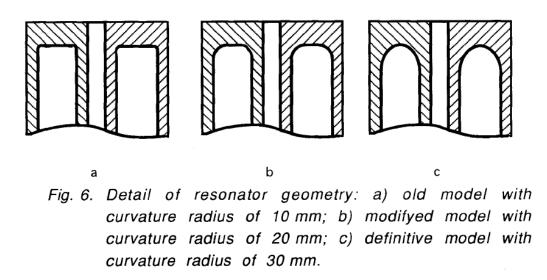
Higher performance than lead plating, can compete with bulk Nb in the 100 MHz and at 4.2 K

Nb sputter technology (history)

- <u>It all started at CERN in the early 80's</u> (C. Benvenuti, N. Circelli, M. Hauer, Applied Physics Letters 45, 583,1984)
- The magnetron sputtering technology was chosen for the phase 2 of LEP and industrialized
- 268 Nb/Cu elliptical cavities (352 MHz) installed in LEP
- 16 Nb/Cu elliptical cavities (400 MHz) installed in LHC
- CERN continued the research on elliptical cavities during the 1990 (see for example *C. Benvenuti, S. Calatroni, M. Hakovirta, H. Neupert, M. Prada and A.-M. Valente, Proceedings of the 10th workshop on RF Superconductivity,* 2001, Tsukuba, Japan)

Nb sputter on Cu technology

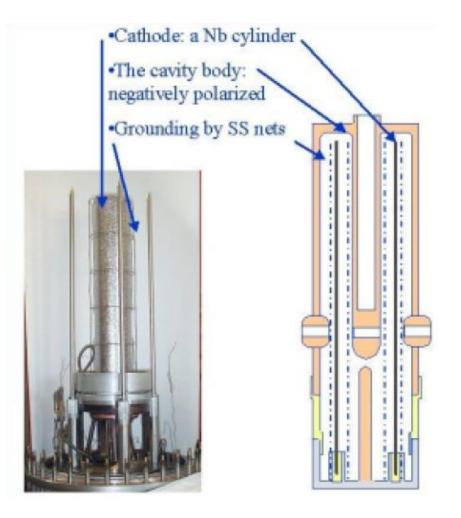
The good features


- Thermally stable (initial motivation)
- Much cheaper raw material
- Possibility to re use the same substrate, no scrap material, replace bad coatings
- Stiffness, <u>no microphonics</u>, can work
 with narrow BW if no beam loading
- Power coupler simplified, no high power RF, no active tuning and complicated feedback systems
- Less sensitive to earth magnetic field: saving on magnetic shielding
- Possibility for new SC materials

The drawback

- For high frequency, high field (2 K) applications; outperformed by bulk Nb
 - Higher residual surface resistance
 - Q slope
 - Much less industrialized

More history: the Nb-Cu QWR for ALPI in INFN-LNL


- Research program was started in 1988 (V. Palmieri, R. Preciso, V. L. Ruzinov, S. Yu. Stark, L. Badan, A. M. Porcellato, Proceedings of the 5th Workshop on RF superconductivity, 1991)
- By 1993 reliable results were reached: three prototypes overcome 6 MV/m at 7 W
- 1995 first 4 resonators installed in ALPI (performance degradation on line)
- 1997 new series of QWR with improved design : 5.7-7 MV/m at 7 W
- 1998 second cryostat with 4 QWR operates at 6 MV/m with beam, R/D is stopped
- 1999 ALPI upgrading program launched: turn old Pb plated to Nb sputtered cavities
- 2003 the whole medium beta section of ALPI is upgraded \rightarrow +60% energy gain

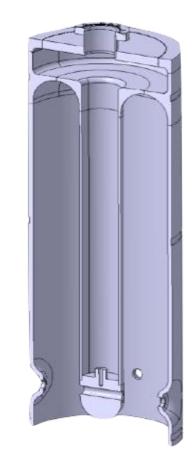
Evolution of resonator geometry (from V. Palmieri, V. L. Ruzinov, S. Yu. Stark, L. Badan, A. M. Porcellato, R. Preciso, F. Chiurlotto, M. Morvillo; Proceedings of the 6th Workshop on RF superconductivity, 1993)

Bias sputtering configuration

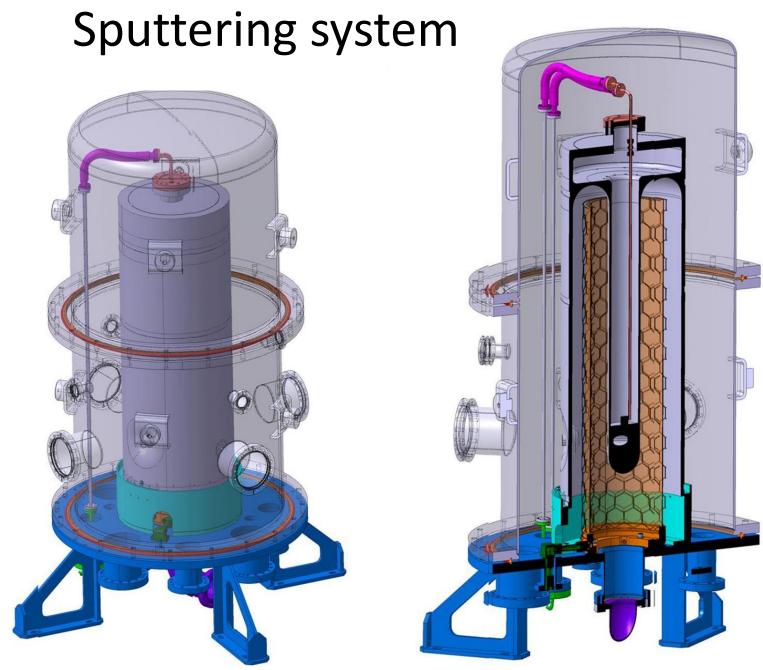
ALPI cryostat

From Pramana- Journal of physics, Vol 59, No. 5, November 2002, pp. 871-880

From <u>www.lnl.infn.it</u>


HIE ISOLDE cavities

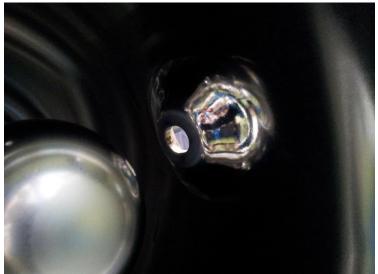
Low β



High β

A. D'Elia, R. M. Johnes, M. Pasini, Proceedings of SRF2009, Berlin, Germany

Table 1: Cavity design parameters				
Cavity	Low β	high eta		
No. of Cells	2	2		
f (MHz)	101.28	101.28		
eta_0 (%)	6.3	10.3		
Design gradient $E_{acc}(MV/m)$	6	6		
Active length (mm)	195	300		
Inner conductor diameter (mm)	50	90		
Mechanical length (mm)	215	320		
Gap length (mm)	50	85		
Beam aperture diameter (mm)	20	20		
$U/E_{\rm acc}^2 ({\rm mJ/(MV/m)^2}$	73	207		
$E_{\rm pk}/E_{\rm acc}$	5.4	5.6		
$H_{\rm pk}/E_{\rm acc}$ (Oe/MV/m)	80	100.7		
$R_{\rm sh}/Q(\Omega)$	564	548		
$\Gamma = R_{\mathbf{S}} \cdot Q_0 \ (\Omega)$	23	30.6		
Q_0 for 6MV/m at 7W	$3.2\cdot 10^8$	$5\cdot 10^8$		
TTF max	0.85	0.9		
No. of cavities	12	20		


G. Lanza, S. Calatroni, L. Marques Antunes Ferreira, A. Gustafsson, M. Pasini, P. Trilhe, Vincenzo Palmieri; Proceedings of SRF2009, Berlin, Germany

CERN Sputtering system for QWR

Nb sputtered cavity

RF tests in vertical cryostats

In 2012, 10 test cavities (with parameters progressively closer to the ALPI sputtering protocol), qualified at 4.5 K

New version of fundamental power coupler qualified

Dedicated experiments done to assess the contribution of the bottom plate contact to the total loss

Dedicated experiment done to assess the sensitivity of the cavity Q to stray magnetic field from the superconducting solenoid

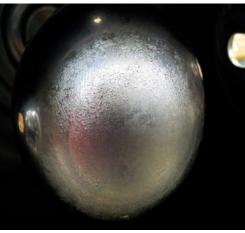
Dedicated experiment done to check the possibility that Q switches originated in the transition of the bottom plate to the normal conducting state

Improvements to the test setup (infra red lamps, mobile coupler, spare inserts, logistics)

ightarrow Turnaround of 2 weeks demonstrated

Q2_5: November 2011 first cavity with bias diode method and increased coating temperature

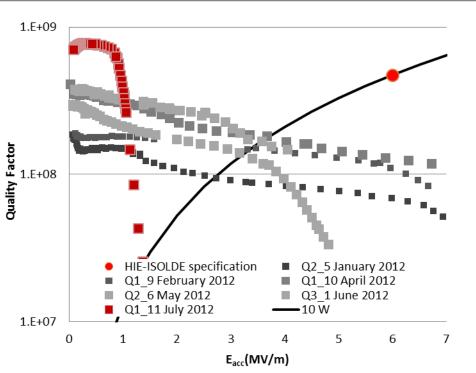
Parameter/feature	HIE ISOLDE cavity CERN	ALPI cavity INFN-LNL	For the first time E _{acc} of 6 MV/m was reached
Substrate	SUBU	Tumbling, EP then SUBU	
treatment			Q still too low, an order of magnitude
Rinsing water	5-6 bar	100 bar	
pressure			Passible abmic course (bottom plate?)
Bake out	120 ° C	600 ° C	Possible ohmic source (bottom plate?)
temperature	(<sputtering t)<="" th=""><th>(>sputtering T)</th><th>Measurement with In gasket excluded major effect</th></sputtering>	(>sputtering T)	Measurement with In gasket excluded major effect
Sputtering	100 ° C → 485°C	300 → 500 °C	
temperature			1.E+09 Q2_5 Dec 2011
Sputtering	1.4 10 ⁻¹ mbar	2 10 ⁻¹ mbar	HIE-ISOLDE specification
pressure			◆ Q2_5 January 2012
Number of layers	1	12-20 layers	Q2_5 March 2012
Power	1.8 kW	5 kW (for 2.5 times smaller	
		surface)	
Cathode voltage	850 V	1 kV	j j
Bias voltage	-80 V	-120 V	1.E+08
Total electrical	28 kWh	15 kWh	
energy			1.E+08
Auxiliary electrode	2 cm diameter,	4 cm diameter (2/3 of inner	
	grounded	conductor), rounded, bias	
		potential	
Film minimum	1 μm (?)	2 μm	
thickness			
Sputtering gas	Krypton	Argon	1.E+07 0 1 2 3 4 5 6 7
Venting gas	Dry air	N ₂	E _{acc} (MV/m)
vacuum joint	Viton	CF	


Q1_10: March 2012 SS support (reduced temperature gradient during coating); helicoflex gasket (improved vacuum)

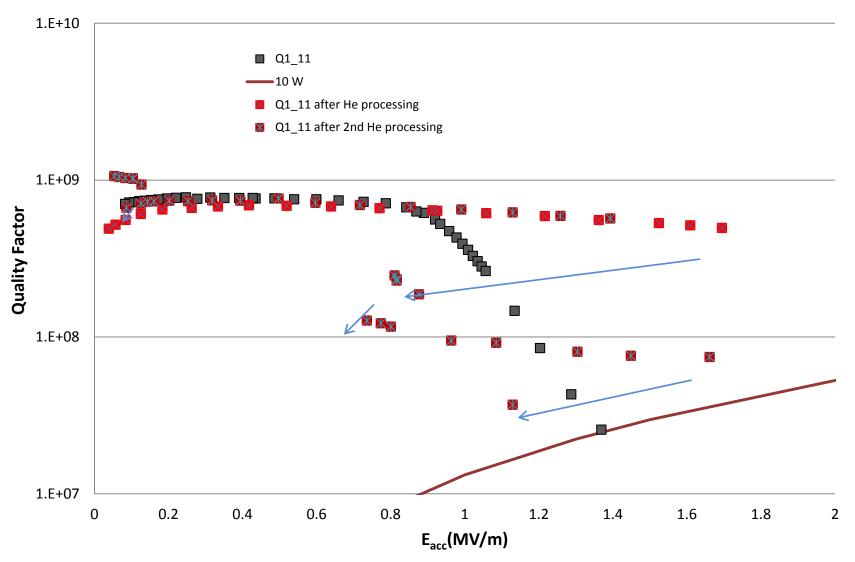
	Vacuality			
Parameter/feature	HIE ISOLDE cavity CERN	ALPI cavity INFN-LNL	The positive trend on Q_0 with increasing dN/dt and T	
Substrate treatment	SUBU	Tumbling, EP then SUBU	continued, but Q slope also increased: no much gain at 6 MV/m	
Rinsing water pressure	5-6 bar	100 bar		
Bake out temperature	120 ° C (<sputtering t)<="" th=""><th>600 ° C (>sputtering T)</th><th></th></sputtering>	600 ° C (>sputtering T)		
Sputtering temperature Sputtering	<pre>115°C →590°C (gradient reduced) 2.2 10⁻¹ mbar</pre>	300 → 500 °C 2 10 ⁻¹ mbar	 HIE-ISOLDE specification Q2_5 January 2012 Q1 9 February 2012 	
pressure Number of layers Power	1 3.6 kW→5 kW	12-20 layers 5 kW (for 2.5 times smaller	Q1_10 April 2012 10 W	
Cathode voltage Bias voltage Total electrical	920 V -80 V 32 kWh	surface) 1 kV -120 V 15 kWh	1.E+08	
energy Auxiliary electrode	2 cm diameter, grounded	4 cm diameter (2/3 of inner conductor), rounded, bias potential	Gualit Qualit	
Film minimum thickness	1 μm (?)	2 μm	1.E+07	
Sputtering gas Venting gas vacuum joint	Krypton Dry air Helicoflex	Argon N ₂ CF	0 1 2 3 4 5 6 7 E _{acc} (MV/m)	

Q1_11: July 2012 Several changes done to approach the ALPI parameters: IR heaters with copper screens, temperatures, power, sputtering gas, venting gas

Devenuetov/feetuwe		
Parameter/feature	HIE ISOLDE cavity	ALPI cavity INFN-LNL
	CERN	
Substrate	SUBU	Tumbling, EP then SUBU
treatment		
Rinsing water	5-6 bar	100 bar
pressure		
Bake out	570 °C	600 ° C
temperature	(>sputtering T)	(>sputtering T)
Sputtering	300°C →400-440°C	300 → 500 °C
temperature		
Sputtering	2.5 10 ⁻¹ mbar	2 10 ⁻¹ mbar
pressure		
Number of layers	12	12-20 layers
Power	2 kW→8 kW	5 kW (for 2.5 times smaller
		surface)
Cathode voltage	1 kV	1 kV
Bias voltage	-80 V	-120 V
Total electrical	36.4 kWh	15 kWh
energy		
Auxiliary electrode	2 cm diameter,	4 cm diameter (2/3 of inner
	grounded	conductor), rounded, bias
		potential
Film minimum	1 μm (?)	2 μm
thickness		
Sputtering gas	Argon	Argon
Venting gas	N ₂	N ₂
vacuum joint	Viton	CF



"Quantum jump" in Q_0


Bad film quality on the tip of the inner conductor

Field emission at very low field

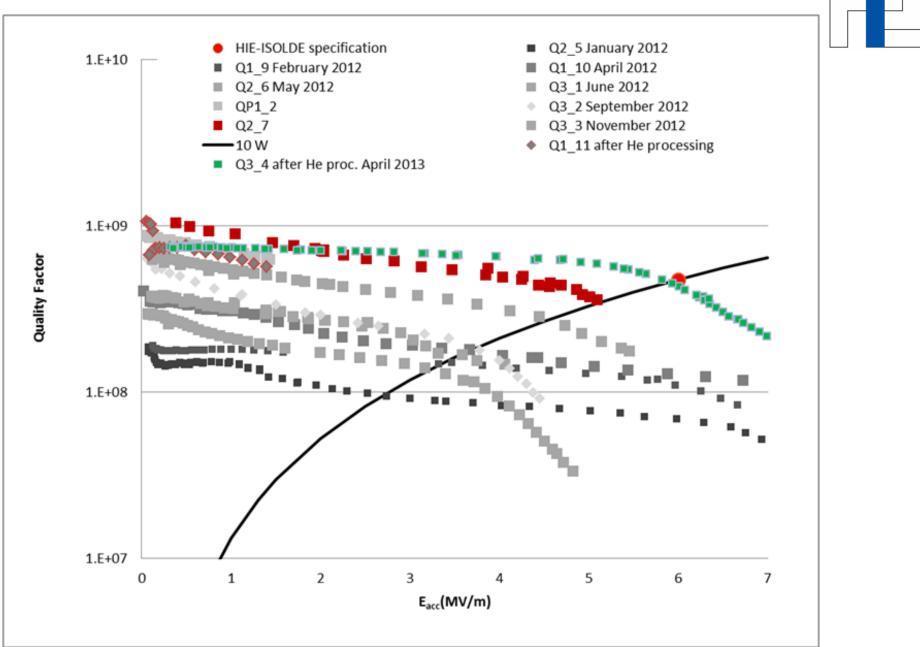
Q switches

Q2_7: October 2012 Increasing film thickness by 25% with same parameters as Q1_11

Parameter/feature	HIE ISOLDE cavity CERN	ALPI cavity INFN-LNL	Reached 5 MV/m at 10 W (5.3 MeV/a for A/q of 4.5!*)
Substrate	SUBU	Tumbling, EP then SUBU	
treatment			No Q switches!
Rinsing water	5-6 bar	100 bar	
pressure			Then degraded and became limited by field emission
Bake out	580°C	600°C	men degraded and became innited by held emission
temperature	(>sputtering T)	(>sputtering T)	
Sputtering	310°C →580°C	300 → 500 °C	
temperature			1.E+10 _ ● HIE-ISOLDE specification ■ Q2_5 January 2012 _
Sputtering	2.6 10 ⁻¹ mbar	2 10 ⁻¹ mbar	Q1_9 February 2012 Q1_10 April 2012
pressure			Q2_6 May 2012 Q3_1 June 2012 Q1 11 July 2012 QP1 2
Number of layers	14	12-20 layers	 Q1_113di y 2012 Q3_2 September 2012 Q2_7
Power	2 kW→8 kW	5 kW (for 2.5 times smaller	
		surface)	1.E+09
Cathode voltage	1 kV	1 kV	
Bias voltage	-80 V	-120 V	Duality Factor
Total electrical	46 kWh	15 kWh	
energy			
Auxiliary electrode	2 cm diameter, bias	4 cm diameter (2/3 of inner	o 1.E+08
	potential	conductor), rounded, bias	
		potential	
Film minimum	Q1_11 + 25%	2 μm	
thickness	should be1.25 but		
	Measured: 0.7 µm!		1.E+07
Sputtering gas	Argon	Argon	0 1 2 3 4 5 6 7
Venting gas	N ₂	N ₂	E _{acc} (MV/m)
vacuum joint	Viton	CF	

*With 10 cavities in Phase 1


2013 developments


- At the end of 2012 the main remaining issues were clearly identified
 - Coating rate (thickness) on cavity top was too low
 - Poor surface quality on tip of inner conductor (peak E field region)
 - Q switches
- Test in Orsay of a cavity affected by Q switch confirmed results at low field, but without Q switch
- Q switch proved to be an **extrinsic effect** likely due to tuning plate
- The cathode distance to the cavity top was decreased by 20 mm on a real cavity (Q3.4) The same configuration was reproduced on a sample run (Q4.3)
- \rightarrow Coating rate increased by a factor two on the cavity top

The Q3.4 cavity reached 6 MV/m at 10 W dissipated power, the HIE ISOLDE Specification

First test in Orsay (February 2013)

Second test in Orsay (April 2013)

Summary

- The Nb sputter on Cu technology for SC cavities, invented at CERN and used for LEP and LHC, is particularly interesting for RIB facilities
- INFN-LNL developed it for QWRs and used it to upgrade the ALPI heavy ion linac
- The same technology was chosen for HIE ISOLDE
- Development phase started at CERN in 2008, end 2012 cavity performance reached satisfactory levels
- Recently HIE ISOLDE specs were achieved on a prototype cavity