

Motivation (TLEP Design study Draft)

(Tara)7 Factory (45 Ca)//baam);

Running TLEP as a Giga- (Tera-)Z Factory (45 GeV/beam):

Polarization gives access to certain physics (e.g. SLC)

Want > 50%, maybe at lower luminosity

Running TLEP @ WW threshold (80...90 GeV/beam)

♀want energy calibration (P ≥ 5%)

Running TLEP at the Higgs (120 GeV/beam):

@Energy calibration?

Running TLEP at tt (175 GeV/beam)

@Energy calibration?

Introduction: LEP Observations & Data

LEP has had the highest-energy polarized electron beams
Senergy spread reduces polarization at highest energy

U. Wienands; 4th TLEP Ws, CERN, 4-April-2013

Polarization time constants

Sokolov-Ternov polarization:

$$\tau_{\rm st}^{-1} = \frac{5\sqrt{3}}{8} \frac{r_{\rm e} \gamma^5 \hbar}{m_{\rm e} |\rho|^3} = \frac{2\pi}{99} \frac{E^5}{C\rho^2}$$

Machine	E (GeV)	ρ (m)	<i>C</i> (m)	<i>т</i> _{S-T} (h)
LEP(2)	45	3100	26700	6
LEP3	45	2600	26700	4.3
LEP3	120	2600	26700	0.03 (2 min)
TLEP-Z	45	9000	80000	154
TLEP-H	120	9000	80000	1.15
TLEP-t	175	9000	80000	0.17 (10 min)

-SLAC

A simple model to describe the energy limit

Spin resonances every 0.441 GeV (for e[−])

Stails in a beam may extend beyond these

In the way back => some depolarization.

Spin tune modulated by Qs => reduces space for spin tune.

"Phenomenological Description"

Solution I answer the polarization of the pola

SLAC

To finish this, we need to know D

Crossing a depolarizing resonance => we can estimate D using the Froissart-Stora formula:

$$1 - D = 2 e^{-\frac{1}{2} \frac{\pi w k^2}{\alpha}} - 1$$

□ for our cases, *wk* ≈ 0.001 and α ≤ 0.01 so D turns out to be 1..4 x 10⁻⁴ per crossing.

This effect competes with Sokolov-Ternov to reduce the eq.

polarization:

$$Pol := \frac{P0}{1 + \frac{tau_ST e^{-\frac{H}{H_ave}} D}{tau_e}}$$

Putting it all together:

 $Q(dE = (0.5 - Q_s(E)) * 0.441 \text{ spin-tune-space expressed in GeV})$

 \mathbf{A}_{Q_s} comes in as the spin tune of each particle is modulated by Q_s

Solution $Q_s(E)$ we need to have an estimate of $V_{rf}(E)$.

We do this such that the momentum acceptance stays reasonable

 $= V_{rf} \propto E^2$, roughly hitting the nominal values per the parameter table.

LEP2

-SLAC

$QV_{rf} = 1/3 * E^2$ (*E* in GeV, V_{rf} in GV [3.64 GV @ 104.5 GeV])

U. Wienands; 4th TLEP Ws, CERN, 4-April-2013

Comparison of model to LEP2 data

 \bigcirc Assmann (1999) estimates *wk* ≈ 0.0014

 \bigcirc this model would favour wk = 0.002

-SLAC

U. Wienands; 4th TLEP Ws, CERN, 4-April-2013

TLEP Polarization estimate

U. Wienands; 4th TLEP Ws, CERN, 4-April-2013

Optimizing TLEP

In this model, we can gain by

 \bigcirc reducing the energy spread using $J_s \rightarrow 2$

Solution being optimistic reducing $w_k \rightarrow 0.001$

+but note: LEP2 already used quite elaborate algorithm for spin matching **Preducing the synchrotron tune using** $\alpha_p \rightarrow 5 \ge 10^{-6}$

U. Wienands; 4th TLEP Ws, CERN, 4-April-2013

Remarks to the proposed model

The inspiration to this model came from a paper by Derbenev, Kondratenko and Skrinsky.

- On the other hand; the resonance-crossing model used here has also issues due to small # of synchrotron oscillation periods
- **W**The interesting difference between these descriptions:
 - \bigcirc D-K-S: a higher Q_s helps polarization (for correlated crossings) \bigcirc this model: a higher Q_s hurts polarization
- Also, at very high energy, D-K-S allow for an increase in polarization

Shigh polarization rate trumps depolarization rate

Solution with the second secon

Solution of the second second

Significant e.g. in LHeC tracking

Linear vs nonlinear Spin Tracking (SLICKTRACK, LHeC, Q_s=0.15)

U. Wienands; 4th TLEP Ws, CERN, 4-April-2013

TLEP Polarization time

U. Wienands; 4th TLEP Ws, CERN, 4-April-2013

TLEP Polarizing Wiggler @ 45 GeV

-SLAC

Note: $100 \text{ s} => V0 \approx 3 \text{ GeV}$ $\approx 3E34 \text{ lumi}$ for 50 MW sr power, most of power goes into wiggler(s) &

U. Wienands; 4th TLEP Ws, CERN, 4-April-2013

Where does this leave us?

Sokolov-Ternov polarization in TLEP appears to be difficult to achieve

Alain proposes wigglers — power density [MW/small divergence] manageable??

@@ 90 GeV: enough polarization for an energy calibration may be possible.
 here wigglers could help

@ H energy: even under optimistic assumptions not much left

enough for an energy calibration??? 1 hour build-up time would be enough for this.

enough for energy calibration?.

it would be very interesting as a test case for the theory!

Can snakes come to the rescue??

Siberian Snakes (180° Spin Rotators)

Solution A pair of snakes with longitudinal/radial axis can suppress depolarizing resonances & stabilize $\frac{\partial \hat{n}}{\partial \delta}$ (up to a point).

Spin direction opposite in the two halves of the ring => no radiative pol.
One of the snakes can double-up as IR spin rotators.

Derbenev-Grote proposal

for LEP

- inject polarized
- no "compacted" bends
 (but wigglers could work)
- Similar arrangement of snakes in the injector ring
- 18.5...37 Tm of dipole required for each snake

U. Wienands; 4th TLEP Ws, CERN, 4-April-2013

A conceivable scenario for TLEP?

Suberian Snakes to accelerate a polarized beam to 45 GeV

- would need pairs of longitudinal & radial snakes, depending on resonance strength
- \bigcirc snake pair in the collider to maintain polarization (for $\ge 1/2$ h)
 - Allows polarized physics running @ the Z.
 - Snakes will prevent energy calibration with polarization
- \bigcirc At 90 GeV, $τ_{pol}$ ≈ 5 h and P ≈ 0.2...0.4 (no snakes)

Senough to get an energy-calibration point.

GeV, τ_{pol} ≈ 1 h...10 min

Image of the second second

Summary

Achieving polarization in TLEP will be challenging

Caught between Scylla (long polarization time)
 and Charybdis (depolarization due to unavoidable energy spread)
 Polarizing wiggler(s) present power-handling challenge
 Siberian Snakes may come to the rescue

would need to accelerate polarized beam & maintain polarization
 vertical bends => potential to blow up vertical emittance
 needs a polarization-capable injector chain.

Image: Second secon

A hybrid scenario may be conceivable

Snakes for physics running @ Z energy

 \bigcirc self polarization with snakes off @ ≈ 80...90 GeV for energy calibration

The theoretical situation is not particularly clear & may hold surprises.