

Motivation (TLEP Design study Draft)

SLAC

CRunning TLEP as a Giga- (Tera-)Z Factory (45 GeV/beam):

Polarization gives access to certain physics (e.g. SLC)

Want > 50%, maybe at lower luminosity

Want pol. e+ as well

GRunning TLEP @ WW threshold (80...90 GeV/beam)

want energy calibration (*P* ≥ 5%)

GRunning TLEP at the Higgs (120 GeV/beam):

Polarization not required.

<u>OEnergy calibration?</u>

Running TLEP at tt (175 GeV/beam) <u>-</u>
+

<u>OEnergy calibration?</u>

Introduction: LEP Observations & Data

OLEP has had the highest-energy polarized electron beams Energy spread reduces polarization at highest energy

U. Wienands; 4th TLEP Ws, CERN, 4-April-2013

SL AC

Polarization time constants

OSokolov-Ternov polarization:

$$
\tau_{\rm st}^{-1} = \frac{5\sqrt{3}}{8} \frac{r_{\rm e}\gamma^5 \hbar}{m_{\rm e}|\rho|^3} \ = \frac{2\pi}{99} \frac{E^5}{C\rho^2}
$$

A simple model to describe the energy limit

Spin resonances every 0.441 GeV (for *e–*)

Otails in a beam may extend beyond these

q.e. causes instantaneous jumps beyond the resonant energy

radiative damping causes crossing on the way back => some depolarization.

 \bullet spin tune modulated by Qs => reduces space for spin tune.

SL 40

"Phenomenological Description"

Olf the resonance-crossing causes depolarization *D*, we can make the *ansatz* for the polarization

SL A0

OTo finish this, we need to know D

Crossing a depolarizing resonance => we can estimate D using the *Froissart-Stora* formula:

$$
1 - D = 2 e^{-\frac{1}{2} \frac{\pi w k^2}{\alpha}} - 1
$$

For our cases, $wk \approx 0.001$ and $\alpha \le 0.01$ so D turns out to be 1..4 x 10⁻⁴ per crossing.

This effect competes with Sokolov-Ternov to reduce the eq.

polarization:

\n
$$
Pol := \frac{P0}{1 + \frac{tau_ST e^{-\frac{H}{H_ave}} D}{tau} }
$$

SL AC

PPutting it all together:

 $\Theta(dE = (0.5 - Q_s(E))^* 0.441$ spin-tune-space expressed in GeV)

 $\triangle Q_s$ comes in as the spin tune of each particle is modulated by Q_s

G For a realistic estimate of $Q_s(E)$ we need to have an estimate of $V_r(E)$.

We do this such that the momentum acceptance stays reasonable

 Θ => V_{rf} \propto E^2 , roughly hitting the nominal values per the parameter table.

LEP2

SLAC

$\mathbf{V}_{\text{rf}} = 1/3 * E^2$ (*E* in GeV, V_{rf} in GV [3.64 GV @ 104.5 GeV])

U. Wienands; 4th TLEP Ws, CERN, 4-April-2013

Comparison of model to LEP2 data

Assmann (1999) estimates *wk* ≈ 0.0014

Othis model would favour $wk = 0.002$

U. Wienands; 4th TLEP Ws, CERN, 4-April-2013

TLEP Polarization estimate

U. Wienands; 4th TLEP Ws, CERN, 4-April-2013

12

Optimizing TLEP

On this model, we can gain by

reducing the energy spread using *Js* –> 2 Θ being optimistic reducing $w_k \rightarrow 0.001$

✦but note: LEP2 already used quite elaborate algorithm for spin matching **e**reducing the synchrotron tune using $\alpha_p \rightarrow 5 \times 10^{-6}$

U. Wienands; 4th TLEP Ws, CERN, 4-April-2013

SL 40

Remarks to the proposed model

The inspiration to this model came from a paper by Derbenev, Kondratenko and Skrinsky.

Their condition for correlated multiple resonance crossings is *violated*.

- On the other hand; the resonance-crossing model used here has also issues due to small # of synchrotron oscillation periods
- **O**The interesting difference between these descriptions:
	- D-K-S: a higher *Qs helps* polarization (for correlated crossings) this model: a higher *Qs hurts* polarization
- Also, at very high energy, D-K-S allow for an increase in polarization

high polarization rate trumps depolarization rate

 Θ this model allows for that as well

O Neither has higher-order or spin-betatron resonances.

significant e.g. in LHeC tracking

Linear vs nonlinear Spin Tracking (SLICKTRACK, LHeC, *Qs***=0.15) SLAC**

U. Wienands; 4th TLEP Ws, CERN, 4-April-2013

15

TLEP Polarization time

U. Wienands; 4th TLEP Ws, CERN, 4-April-2013

16

TLEP Polarizing Wiggler @ 45 GeV

SLAC

Note: $100 s \Rightarrow \sqrt{0} \approx 3 GeV$ ≈ 3E34 lumi for 50 MW sr power, most of power goes into wiggler(s) $\frac{1}{26}$

U. Wienands; 4th TLEP Ws, CERN, 4-April-2013

Where does this leave us?

Sokolov-Ternov polarization in TLEP appears to be difficult to achieve

- \odot \odot Z energy: good polarization, but excessive build-up time (150 h)
- ✦Alain proposes wigglers power density [MW/small divergence] manageable??
- \odot g0 GeV: enough polarization for an energy calibration may be possible. ✦here wigglers could help
- \odot \odot H energy: even under optimistic assumptions not much left
	- ✦enough for an energy calibration??? 1 hour build-up time would be enough for this.
- @ tt energy: very fast build-up (10 min), maybe some polarization ں
-F
	- ✦enough for energy calibration?.
	- \triangle it would be very interesting as a test case for the theory!

O Can snakes come to the rescue??

Siberian Snakes (180° Spin Rotators)

A pair of snakes with longitudinal/radial axis can suppress depolarizing resonances & stabilize $\frac{on}{\lambda s}$ (up to a point). ∂*n*ˆ ∂δ

n

Spin direction opposite in the two halves of the ring => no radiative pol. One of the snakes can double-up as IR spin rotators.

Derbenev-Grote proposal

for I FP

 \blacksquare For TLEP:

- ✦inject polarized
- ✦no "compacted" bends (but wigglers could work)
- ✦Similar arrangement of snakes in the injector ring
- ✦18.5…37 Tm of dipole required for each snake

U. Wienands; 4th TLEP Ws, CERN, 4-April-2013

A conceivable scenario for TLEP ?

Use Siberian Snakes to accelerate a polarized beam to 45 GeV

would need pairs of longitudinal & radial snakes, depending on resonance strength

 Θ snake pair in the collider to maintain polarization (for ≥ 1/2 h)

- \triangle Allows polarized physics running ω the Z.
- ✦Snakes will prevent energy calibration with polarization

At 90 GeV, *τpol* ≈ 5 h and *P* ≈ 0.2…0.4 (no snakes)

Cenough to get an energy-calibration point.

At 120…175 GeV, *τpol* ≈ 1 h…10 min

might get enough polarization for energy calibration

<u>SL 40</u>

Summary

CAchieving polarization in TLEP will be challenging

Caught between Scylla (long polarization time) and Charybdis (depolarization due to unavoidable energy spread) Polarizing wiggler(s) present power-handling challenge **Siberian Snakes may come to the rescue**

would need to accelerate polarized beam & maintain polarization \blacktriangleright vertical bends => potential to blow up vertical emittance needs a polarization-capable injector chain.

 Θ no polarized posi's \odot

A hybrid scenario may be conceivable

 Θ Snakes for physics running ω Z energy

■ self polarization with snakes off $@ \approx 80...90$ GeV for energy calibration

O The theoretical situation is not particularly clear & may hold surprises.