Physics Overview

Higgs Decay Branching Ratios

Couplings proportional to masses (?)

Important couplings through loops:

$$-$$
gluon + gluon \rightarrow Higgs $\rightarrow \gamma \gamma$

Many decay modes measurable if $M_h \sim 125 \text{ GeV}$

Unofficial Combination of Higgs Search Data from March 6th

Couplings resemble Higgs of Standard Model

• No indication of any significant deviation from the Standard Model predictions

[B. & Tevons You, arXiv:1303.3879]

Some Questions

- What is it?
 - -Higgs or ...?
- What else is there?
 - -Supersymmetry or ...?
- What next?
 - -A Higgs factory or ...?

- Does it have spin 0 or 2?
- Is it scalar or pseudoscalar?
- Is it elementary or composite?
- Does it couple to particle masses?
- Quantum (loop) corrections?
- What are its self-couplings?

The 'Higgs' Spin is probably 0

Graviton-like spin-2 disfavoured at 98.5% CL

- Does it have spin 0 or 2?
 - Spin 2 very unlikely
- Is it scalar or pseudoscalar?
- Is it elementary or composite?
- Does it couple to particle masses?
- Quantum (loop) corrections?
- What are its self-couplings?

The 'Higgs' is probably a scalar

• Pseudoscalar 0⁻ disfavoured at > 99% CL

- Does it have spin 0 or 2?
 - Spin 2 seems unlikely, but needs experimental checks
- Is it scalar or pseudoscalar?
 - Pseudoscalar disfavoured by experiment
- Is it elementary or composite?
- Does it couple to particle masses?
- Quantum (loop) corrections?
- What are its self-couplings?

General Analysis of 'unHiggs' Models

• Parametrization of effective Lagrangian:

$$\mathcal{L}^{(2)} = \frac{1}{2} (\partial_{\mu} h)^2 + \frac{v^2}{4} \operatorname{Tr} \left(D_{\mu} \Sigma^{\dagger} D^{\mu} \Sigma \right) \left(1 + 2a \frac{h}{v} + b \frac{h^2}{v^2} + \cdots \right)$$

 $-\frac{v}{\sqrt{2}}\lambda_{ij}^{u}\left(\bar{u}_{L}^{(i)},\bar{d}_{L}^{(i)}\right)\Sigma\left(u_{R}^{(i)},0\right)^{T}\left(1+c_{u}^{2}+c_{2u}\frac{h^{2}}{v^{2}}+c_{2u}\frac{h^{2}}{v^{$ Universal Rescaling: 95% CL Exclusions

• Fits

Global Analysis of Higgs-like Models

• Rescale couplings: to bosons by a, to fermions by c

• Standard Model: a = c = 1

- Does it have spin 0 or 2?
 - Spin 2 seems unlikely, but needs experimental checks
- Is it scalar or pseudoscalar?
 - Pseudoscalar disfavoured by experiment
- Is it elementary or composite?
 - No significant deviations from Standard Model
- Does it couple to particle masses?
- Quantum (loop) corrections?
- What are its self-couplings?

It Walks and Quacks like a Higgs

• Do couplings scale ~ mass? With scale = v?

• Red line = SM, dashed line = best fit

- Does it have spin 0 or 2?
 - Spin 2 seems unlikely, but needs experimental checks
- Is it scalar or pseudoscalar?
 - Pseudoscalar disfavoured by experiment
- Is it elementary or composite?
 - No significant deviations from Standard Model
- Does it couple to particle masses?
 - Some *prima facie* evidence that it does
- Quantum (loop) corrections?
- What are its self-couplings?

Loop Corrections?

• ATLAS sees excess in $\gamma\gamma$, CMS sees deficit

Loop diagrams ~ Standard Model?

- Does it have spin 0 or 2?
 - Spin 2 seems unlikely, but needs experimental checks
- Is it scalar or pseudoscalar?
 - Pseudoscalar disfavoured by experiment
- Is it elementary or composite?
 - No significant deviations from Standard Model
- Does it couple to particle masses?
 - Some *prima facie* evidence that it does
- Quantum (loop) corrections?
 - $-\gamma\gamma$ coupling > Standard Model?
- What are its self-couplings?

Theoretical Constraints on Higgs Mass

- Large $M_h \rightarrow$ large self-coupling \rightarrow blow up at low-energy scale Λ due to
 - renormalization
- Small: renormalization due to t quark drives quartic coupling < 0 at some scale Λ
 - → vacuum unstable

Vacuum could be stabilized by Supersymmetry

Vacuum Instability in the Standard Model

Very sensitive to m_t as well as M_H

 Present vacuum probably metastable with lifetime >> age of the Universe

What else is there?

Supersymmetry

- Successi
 - Should
- Successi
 - Should

Maybe it is a Supersymmetric Duck?

• Fits with lighter/heavier scalar Higgs at 125 GeV

Maybe it is a Supersymmetric Duck?

• Fits with lighter/heavier scalar Higgs at 125 GeV

What Next: A Higgs Factory?

To study the 'Higgs' in detail:

- The LHC
 - Rethink LHC upgrades in this perspective?
- A linear collider?
 - ILC up to 500 GeV
 - CLIC up to 3 TeV (Larger cross section at higher energies)
- A circular e+e- collider: TLEP, ...
 - A photon-photon collider: SAPPHiRE
- A muon collider

Higgs Factory Summary

precision

Best

			·			-
Accelerator	LHC	HL-LHC	ILC (250)	ILC	EP3	TLEP
→ Physical	300fb ⁻¹ /exp	3000fb ⁻¹	250 fb ⁻¹	(250+350+1000)	240	240 +35)
quantity ↓		/exp			4 IP	4 IP
Approx. date	2021	2030	2035	2045	2035	2035
N _H	1.7 x 10 ⁷	1.7 x 10 ⁸	5 10⁴ZH	(10 ⁵ ZH)	4 10 ⁵ ZH	2 10 ⁶ ZH
			L	(1.4 10 ⁵ Hvv)		
m _H (MeV)	100	50	35	35	26	7
$\Delta\Gamma_{\text{H/}}\Gamma_{\text{H}}$			10%	3%	4%	1.3%
$\Delta\Gamma_{\text{inv}}/\Gamma_{\text{H}}$	Indirect	Indirect	1.5%	1.0%	0.35%	0.15%
,	(30%?)	(10% ?)				
$\Delta g_{H\gamma\gamma}/g_{H\gamma\gamma}$	6.5 - 5.1%	5.4 – 1.5%		5%	3.4%	1.4%
$\Delta g_{Hgg}/g_{Hgg}$	11 - 5.7%	7.5 - 2.7%	4.5%	2.5%	2.2%	0.7%
$\Delta g_{Hww}/g_{Hww}$	5.7 – 2.7%	4.5 – 1.0%	4.3%	1%	1.5%	0.25%
Δg _{HZZ} /g _{HZZ}	5.7 – 2.7%	4.5 – 1.0%	1.3%	1.5%	0.65%	0.2%
Δg _{ннн} /g _{ннн}	+	< 30%	+	~30%		
		(2 exp.)				
$\Delta g_{H\mu\mu}/g_{H\mu\mu}$	<30	<10			14%	7%

ICFA Higgs Factory West nop Fermilab, Nov. 2012

Impact of Higgs Factory?

- Predictions of current best fits in simple models
- Current uncertainties in SM calculations [LHC Higgs WG] (important correlations)
- Comparisons with
 - LHC
 - HL-LHC
 - ILC
 - TLEP

Impact of TeraZ & GigaW

- No serious studies yet: refer back to GigaZ studies

 Heinemeyer & Weiglein, arXiv:1007.5233
- Issues in LEP/SLC data at Z peak
- Big improvement possible at GigaZ

observable	central exp. value	$\sigma \equiv \sigma^{\rm today}$	$\sigma^{ m LHC}$	σ^{ILC}
M_W [GeV]	80.399	0.023	0.015	0.007
$\sin^2 \theta_{ m eff}$	0.23153	0.00016	0.00020-0.00014	0.000013
$m_t \; [{ m GeV}]$	173.3	1.1	1.0	0.1

• BUT $\delta\alpha_{em}$, δM_Z , higher-order EW ...

	$\delta m_t = 1 \text{ GeV}$	$\delta m_t = 0.1~{\rm GeV}$	$\delta(\Delta lpha_{ m had})$	δM_Z
$\delta \sin^2 \theta_{\rm eff} \ [10^{-5}]$	3	0.3	1.8	1.4
$\Delta M_W \; [{ m MeV}]$	6	1	1	2.5

Precision at TeraZ/GigaW?

• Estimates using M_H , M_Z , α_{em} , m_t , α_s :

$$M_W = 80.361 \pm 0.006 \pm 0.004 \text{ GeV}$$

(parametric) (higher-order EW)

$$\sin^2\theta_{\rm eff} = 0.23152 \pm 0.00005 \pm 0.00005$$

(parametric) (higher-order EW)

Ferroglia & Sirlin, arXiv:1211.1864

• GigaZ/MegaW aim at

$$\delta M_W = 7 \text{ MeV}, \quad \delta \sin^2 \theta_{eff} = 10^{-5}$$

- What can be done with TeraZ/GigaW?
- Much theoretical work also needed!

Summary

- Beyond any reasonable doubt, the LHC has discovered a (the) Higgs boson
- The LHC may discover physics beyond the SM when it restarts at ~ 13 TeV
- If it does, priority will be to study it
- If it does not, natural to focus on the Higgs
- In this case, TLEP offers the best prospects
 - and also other high-precision physics
- A severe test also for theoretical physics