
Precision Measurements: Higgs and Top

- TLEP: A first step in a long-term vision for particle physics
 - In the context of a global project

- See Design Study Proposal at
 - http://tlep.web.cern.ch/
 - → And sign-up the web form to express your interest!

Bibliography

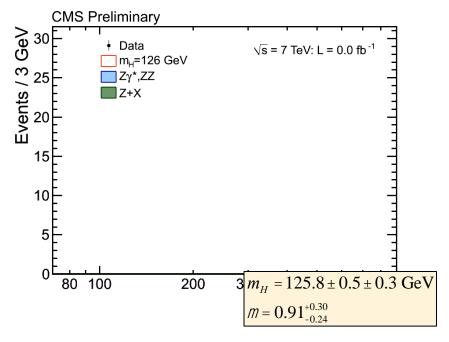
- [1] G. Gomez-Ceballos, "Study of SMS Production in bosonic decay channels with CMS", talk given at the Rencontres de Moriond (Mar. 2013)
- [2] F. Hubaut, "Study of SMS production in bosonic decay channels with ATLAS", talk given at the Rencontres de Moriond (Mar. 2013)
- [3] B. Mansoulié, "Combination of SMS results with ATLAS", talk given at the Rencontres de Moriond (Mar. 2013)
- [4] K. Moniq, "ATLAS and CMS Physics Prospects at the HL-LHC", talk given at the CLIC Workshop (Jan. 2013)
- [5] R. Kogler, "The EW fit after the SMS discovery at LHC", , talk given at the Rencontres de Moriond (Mar. 2013)
- [6] LHCb, "First evidence for the decay $B_s^0 \rightarrow \mu^+\mu^-$ ", Phys.Rev.Lett. 110 (2013) 021801
- [7] P. Janot and G. Ganis, "The HZHA Generator" in Physics at LEP2, CERN Report 96/01 (Vol.2) 309
- [8] S. Dittmaier et al., "Handbook of LHC Higgs cross sections: inclusive observables", CERN-2011-002 (Vol.1) 76
- [9] R.S. Gupta, H. Rzehak, J.D. Wells, "How well do we need to measure Higgs boson couplings?", arXiv:1206.3560 (2012)
- [10] H. Baer et al., "Physics at the International Linear Collider", in preparation, see http://lcsim.org/papers/DBDPhysics.pdf
- [11] CMS, "CMS at the High-Energy Frontier", ESPP Contribution #177
- [12] ATLAS, "Physics at a High-Luminosity LHC with ATLAS", ATL-PHYS-PUB-2012-004 (2012), ESPP Contribution #174
- [13] M. Zanetti, talk given at the 2nd LEP3 day (Oct. 2012)
- [14] H. Stoeck et al., "ILD Letter of Intent", arXiv:1006.3396 (2010)
- [15] P. Azzi et al., "Prospective studies for LEP3 with the CMS detector", arXiv 1208.1662 (2012)
- [16] J.E. Brau et al., "The physics case for an e⁺e⁻ linear collider", ESPP Contribution #69
- [17] C.F. Duerig, "Determination of the Higgs Decay Width at the ILC", talk given at the LCWS12 (Oct. 2012)
- [18] P. Janot, "Higgs beyond the LHC", talk given at the HF2012 ICFA Workshop (Nov. 2012)
- [19] M. Peskin, "Ultimate Higgs Measurements at ILC, LEP3 and TLEP", talk given at the 3rd TLEP3 day (Jan. 2013)
- [20] A. Blondel et al., Report of the ICFA Beam Dynamics Workshop, "Accelerators = for a Higgs Factory: Linear vs. Circular", HF2012 (2013)
- [21] M. Martinez and R. Miquel, "Multi-parameter fits to the tt threshold observables at a future e+e- linear collider", Eur. Phys. Jour. C27 (2003) 49.
- [22] Electroweak fits run by M. Gruenewald (private communication, Nov. 2012)
- [23] P. Janot, "Physics Landscape and TLEP/LEP3 motivation", talk given at the 1st TLEP3 day (Jun. 2012)
- [24] A. Blondel, "Possibilities and conditions for very high precision electroweak measurements", talk given at the 3rd TLEP3 day (Jan. 2013)
- [25] M.L. Mangano et al., "Higgs cross sections in pp collisions at very high energy", ESPP Contribution #176
- [26] T. Price, "Measurement of the top Yukawa coupling at the ILC", talk given at the LCWS12 (Oct. 2012)
- [27] J. Tian, "Higgs self-coupling study at ILC", talk given at the LCWS12 (Oct. 2012)
- [28] T. Laštovička and J. Strube, "Higgs self-coupling study at CLIC", talk given at the LCWS12 (Oct. 2012)
- [29] E. Meschi, "Detectors for SHE-LHC and TLEP", talk given at the 3rd TLEP3 day (Jan. 2013)

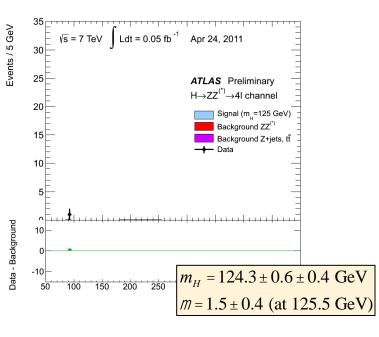
Introduction: Mis-conceptions about TLEP

A compendium of mis-conceptions about TLEP

- TLEP is more expensive than the ILC
- TLEP parameters are stretched by many-order-of-magnitude extrapolations
- TLEP will come later than ILC
- TLEP is superfluous once ILC is approved and starts construction
- ◆ TLEP will delay VHE-LHC
- TLEP required electrical power is unacceptable
- ◆ TLEP physics case is the same as that of ILC (at low energy)
- ◆ TLEP can only do Higgs couplings / TLEP does not cover the physics case
 - We need a machine upgradeable beyond 350 GeV to make discoveries beyond LHC
- TLEP precision is an overkill
 - Higgs couplings do not need to be measured so precisely

All are wrong


- With the upgrade path to a 100 TeV machine (unique to TLEP)
 - TLEP is the first step in a long-term vision for particle physics
 - → And might be the only way to secure high-energy physics in Europe

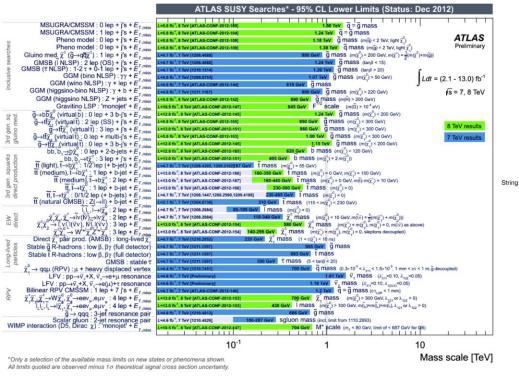

Main Motivation for TLEP

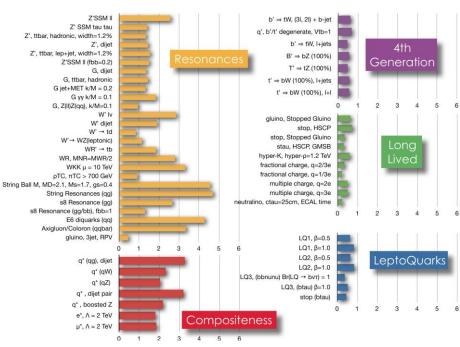
A new boson with mass ~ 126 GeV, and with SMS properties

♦ Example : $H(126) \rightarrow ZZ \rightarrow 4$ leptons in CMS and ATLAS

[1,2,3]

- H(126) couples to the Z boson (important for e⁺e⁻ colliders)
- All couplings compatible with those of the Standard Model Scalar
- Scalar hypothesis favoured over pseudo-scalar or spin-2 particle
- m_H known to ~ 400 MeV
- A factor 100 luminosity will bring the statistical uncertainty on μ to a couple %.

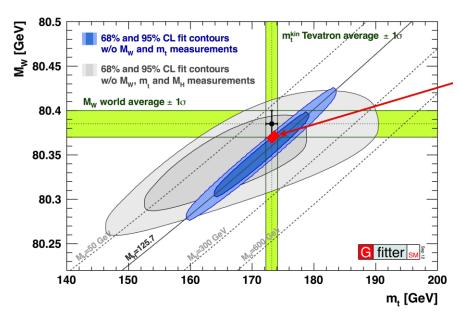

"We need a machine upgradeable beyond 350 GeV" (1)

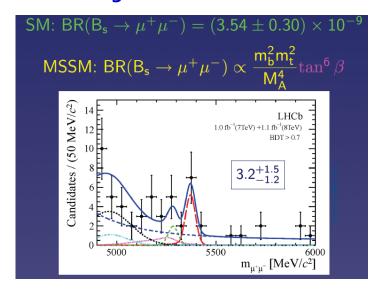

No sign of new physics below a scale of several 100's GeV

[4]

Supersymmetry (ATLAS)

Exotics (CMS)


- Data at higher √s will extend the mass reach to ~500 GeV for SUSY
 - Will know more after the next LHC run at 14 TeV (2015-2017)
 - → Air is getting very thin for e^+e^- colliders with $\sqrt{s} = 500$ GeV (and even 1 TeV)


"TLEP Precision is an overkill"

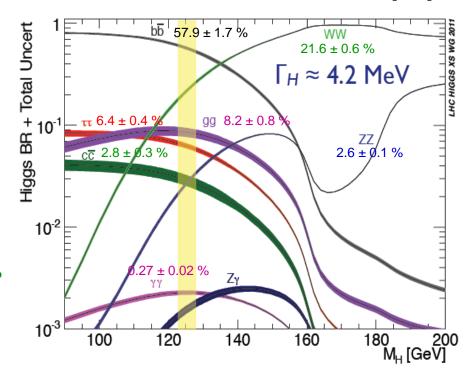
If no new physics is found, what next?

◆ Once m_H is known, the standard model has nowhere to go!

[5,6]

- Very strong incentive to revisit and improve all precision measurements
 - → Z pole, WW threshold
- → Programme unique to TLEP, see Alain's talk

- → Higgs couplings
- → Top quark properties


- This presentation
- \Rightarrow Rare decays (B $_s \rightarrow \mu \mu,$ etc.) \rightarrow Also at the Z pole, unique to TLEP
- ... and find indirect effects of new physics at larger scales

"Higgs couplings do not need to be measured so precisely" (1)

Precision needed for Higgs measurements?

[7,8]

- ◆ Does H(126)
 - Couple to fermions?
 - Account for fermion masses?
 - Fully account for EWSB?
 - Has SM coupling to gauge bosons?
 - Decay to new, visible, particles?
 - Decay to invisible particles?
 - Have the "proper" mass and width?
 - Show any sign of new physics?

- What is the precision needed to answer all these questions in a useful manner?
 - Simple answer: predict and measure as precisely as possible
 - → Not very informative, especially for the last question

"Higgs couplings do not need to be measured so precisely" (2)

Example : Precision for Higgs couplings

Maximal deviations with respect to SM couplings, as a function of new physics scale

• SUSY
$$\frac{g_{hbb}}{g_{h_{\mathrm{SM}}bb}} = \frac{g_{h au au}}{g_{h_{\mathrm{SM}} au au}} \simeq 1 + 1.7\% \left(\frac{1~\mathrm{TeV}}{m_A}\right)^2$$
 , for $\tan\beta$ = 5

• Composite Higgs
$$\frac{g_{hff}}{g_{h_{\rm SM}ff}} \simeq \frac{g_{hVV}}{g_{h_{\rm SM}VV}} \simeq 1-3\% \left(\frac{1~{\rm TeV}}{f}\right)^2$$

• Top partners
$$\frac{g_{hgg}}{g_{h_{\mathrm{SM}}gg}} \simeq 1 + 2.9\% \left(\frac{1~\mathrm{TeV}}{m_T}\right)^2, \qquad \frac{g_{h\gamma\gamma}}{g_{h_{\mathrm{SM}}\gamma\gamma}} \simeq 1 - 0.8\% \left(\frac{1~\mathrm{TeV}}{m_T}\right)^2$$

- Other models may give up to 5% deviations with respect to the Standard Model
- Maximal deviations for the new physics scale still allowed by LHC results

	ΔhVV	$\Delta h ar{t} t$	$\Delta h ar{b} b$
Mixed-in Singlet	6%	6%	6%
Composite Higgs	8%	tens of $\%$	tens of $\%$
Minimal Supersymmetry	< 1%	3%	$10\%^a$, $100\%^b$

Strongly influences the strategy for Higgs factory projects

- Need at least a per-cent accuracy on couplings for a 5σ "observation"
 - And sub-percent precision if new physics is at the (multi-)TeV scale

[9,10]

Precision at existing colliders: (HL-)LHC(1)

Executive summary

Approved LHC, 300 fb⁻¹ at 14 TeV:

- ♦ Higgs mass at 100 MeV
- Disentangle Spin o vs Spin 2 and main CP component in γγ/ZZ*
- Coupling precision / Experiment

ZZ, WW,

5-6%

• bb, ττ

10-15%

tt, μμ

3-2 σ effect

 \bullet $\gamma\gamma$, gg

5-11%

HL-LHC, 3000 fb⁻¹ at 14 TeV:

- Higgs mass at 50 MeV
- More precise studies of Higgs CP sector
- Coupling precision / Experiment

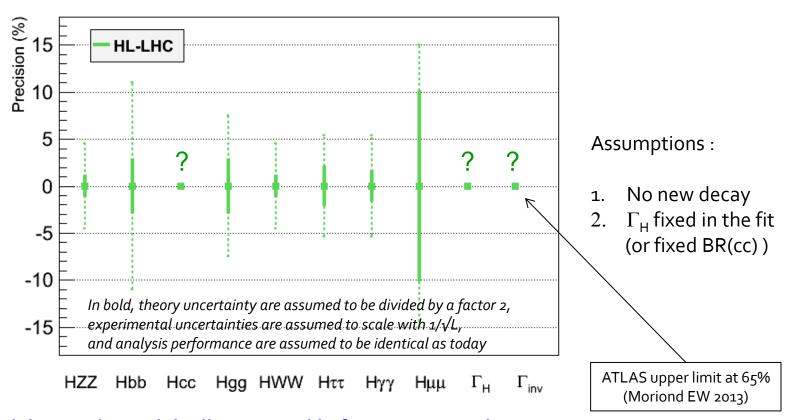
ZZ, ZW,

1-5%

• bb, ττ, tt, μμ 3-10%

• $\gamma\gamma$ and gg 2-7%

HH


 $>3 \sigma$ (2 Expts)

Assuming sizeable reduction of theory errors

[11,12]

Precision at existing colliders: HL-LHC(2)

Graphic representation of HL-LHC projected performance

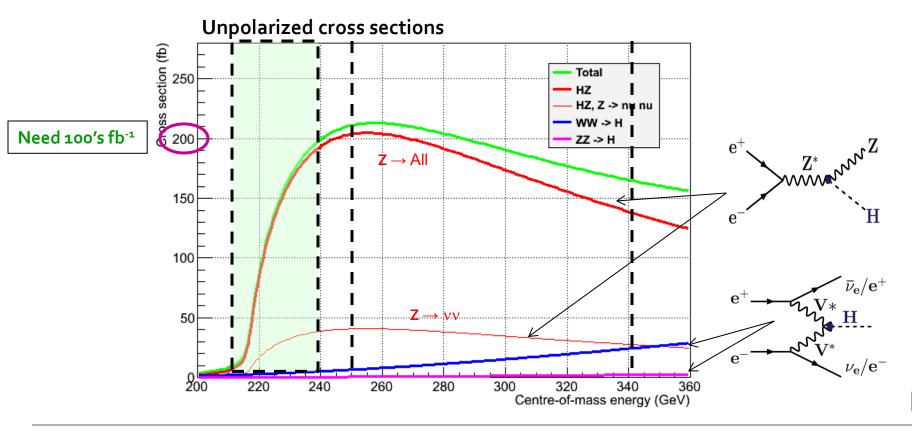
- Much better than originally expected before LHC started
 - Will need vigorous upgrade of CMS and ATLAS detectors
 - → Per-cent to sub-percent precision will require new collider(s)

[11]

"TLEP Physics is the same as ILC Physics" (1)

Physics case not driven by the fact that the collider is linear or circular

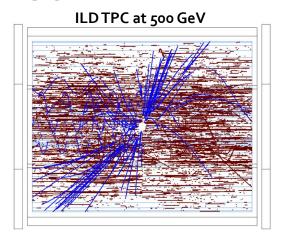
♦ Scan of the HZ threshold : \sqrt{s} = 210-240 GeV

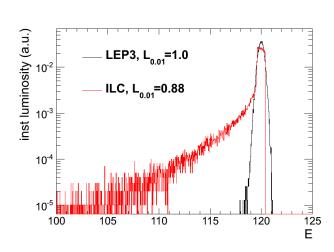

Spin

♦ Maximum of the HZ cross section : \sqrt{s} = 240-250 GeV

Mass, BRs, Width, Decays

Just below the tt threshold : √s ~ 340-350 GeV


Width, CP



"TLEP Physics is the same as ILC Physics" (2)

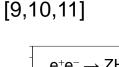
A few specificities, though :

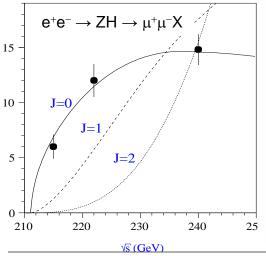
- e⁻(e⁺) beam polarization is easy at the source (possible) for a linear collider.
 - Not critical for Higgs studies.
- No beam disruption from Beamstrahlung for a circular collider ($\sigma_y \sim 300 \text{ nm vs. } 5 \text{ nm}$ @ ILC)
 - No EM backgrounds in the detector (photons, e+e- pairs);
 - No beam energy smearing energy spectrum perfectly known (lumi measurement)
 - Negligible pile-up from $\gamma\gamma$ interactions

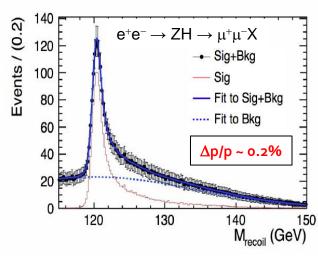
- → No drastic requirements for the detector and the background simulation
- Possibility of operating several IP's simultaneously in circular collider
 - vs. only one IP in linear collider

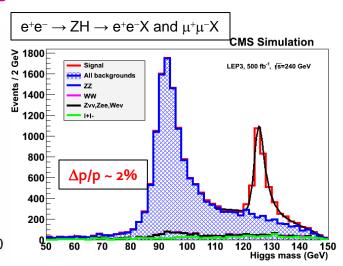
[13,14]

"TLEP Physics is the same as ILC Physics" (3)


Number of Higgs bosons produced at √s = 240-250 GeV


	ILC-250	LEP3-240	TLEP-240	
Lumi / IP / 5 years	250 fb ⁻¹	500 fb ⁻¹	2.5 ab ⁻¹	
# IP	1	1 2-4 2		
Lumi / 5 years	250 fb ⁻¹	1 - 2 ab ⁻¹	5 - 10 ab ⁻¹	
Beam Polarization	80%, 30%	_	_	
L _{0.01} (beamstrahlung)	86%	100%	100%	
Number of Higgs	70,000	400,000	2,000,000	
Upgradeable to	gradeable to ILC 1TeV CLIC 3 TeV		VHE-LHC 100 TeV	

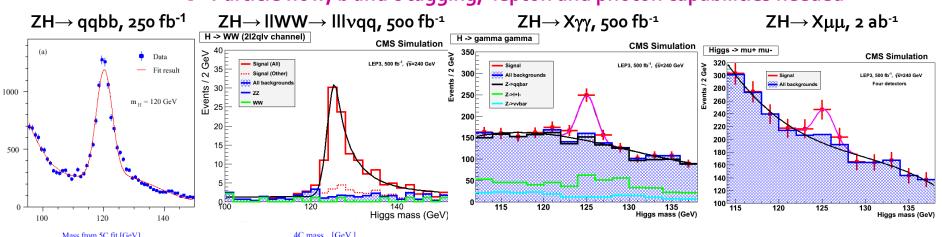

- ◆ LEP3: 4-8 times more luminosity and 3-6 times more Higgs bosons than ILC
- ◆ TLEP: 20-40 times more luminosity and 15-30 times more Higgs bosons than ILC
 - In a given amount of time, Higgs coupling precisions scale like
 - → 2.5% for ILC: 1.3% for LEP3: 0.4% for TLEP
 - → One year of TLEP = five years of LEP3 = 15-30 years of ILC (at 240 GeV)

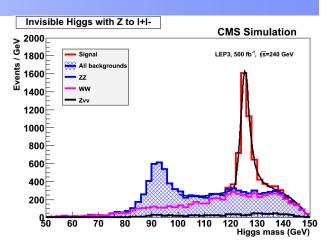

Higgs measurements at √s ~ 240 GeV (1)

- $\,\Box\,$ With $e^+e^- \to ZH \to e^+e^- X$ and $\mu^+\mu^- X$ events
 - Measure HZ cross section in a model independent way
 - Find m_H peak from the leptons and E,p conservation
 - Determine spin with three-point threshold scan
 - \rightarrow 10 fb⁻¹ / point suffice
 - Determine σ_{HZ} and g_{HZZ} coupling at 240 GeV
 - \rightarrow 3% (1.5%) precision on σ_{HZ} (g_{HZZ})with 250 fb⁻¹
 - Good tracker needed, but details mildly depend on the actual performance
 - → Plots below with ILD@ILC and CMS@LEP3

 g_{HZZ}

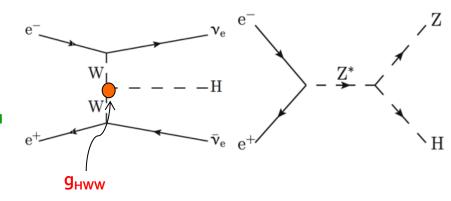
 e^-, μ^-

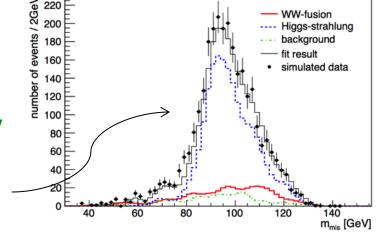

Higgs measurements at √s ~ 240 GeV (2)


□ With ZH \rightarrow e⁺e⁻X and μ ⁺ μ ⁻X events (cont'd)

- Measure invisible decay branching ratio (X = nothing)
 - Precision on BR_{INV} ~ 1% with 250 fb⁻¹
 - Or exclude BR_{INV} > ~2% at 95% C.L.

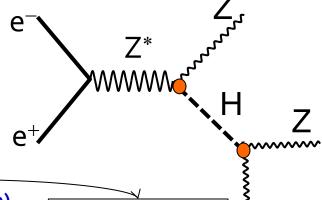
- With exclusive selections of Z and H decays
 - Precision of 1.5% to 8% with 250 fb⁻¹ for the copious decays (bb, WW, gg, $\tau\tau$, cc)
 - Need more luminosity for rare decays (γγ, Ζγ, μμ)
 - → Particle flow, b and c tagging, lepton and photon capabilities needed




Higgs measurements at √s ~ 240 GeV (3)

Higgs width from the Hvv final state

- From $\sigma_{WW\to H}$ and BR(H \to WW)
 - $\sigma_{WW\to H} \sim g^2_{HWW}$
 - BR(H \rightarrow WW) = $\Gamma_{H\rightarrow WW}/\Gamma_{H} \sim g_{HWW}^{2}/\Gamma_{H}$ • $\Gamma_{H} \sim \sigma_{WW\rightarrow H}/BR(H\rightarrow WW)$


- ◆ Contribution to Hvv from HZ ~ 40 pb
 - Known from ZH \rightarrow e⁺e⁻X and μ ⁺ μ ⁻X
- ◆ Contribution from WW fusion ~ 6 pb
 - To be measured
- ♦ Select vvbb events from ZH and WW fusion
 - Needs adequate b tagging and particle flow

- Fit the missing mass distribution for N_{WW→H→bb}
 - σ_{H7} x BR(H \rightarrow bb) known to ~1.5% or better
 - $\sigma_{WW\to H} = N_{WW\to H\to bb} / BR(H\to bb)$
 - → Precision on $\sigma_{WW\rightarrow H}$ ~ 14% with 250 fb⁻¹
 - \rightarrow $\Gamma_{\rm H} \sim \sigma_{\rm WW \rightarrow H}$ / BR(H \rightarrow WW), measured up to 15% precision with 250 fb⁻¹

Higgs measurements at √s ~ 240 GeV (4)

- Higgs width from the ZZZ final state
 - ♦ Number of ZZZ events ~ σ_{H7} × BR(H→ ZZ)
 - $\sigma_{HZ} \sim g^2_{HZZ}$
 - BR(H \rightarrow ZZ) = $\Gamma_{H\rightarrow ZZ}/\Gamma_{H} \sim g^{2}_{HZZ}/\Gamma_{H}$
 - → Number of ZZZ events \sim $(g^4_{HZZ})/\Gamma_H$

- Select I⁺I[−]I^{□+}I^{□−}X events (~ background and H →WW free)
 - Number of events in 250 fb⁻¹ @ 240 GeV :
 - → 250 fb⁻¹ × 200 fb × BR(H \rightarrow ZZ) × BR(Z \rightarrow II)² × 3
 - → About 40 events, of which ~25 selected

Known to 6% from I⁺I⁻X events with 250 fb-1

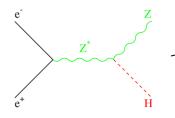
- ullet Hence measure the total width $\Gamma_{\rm H}$ with a precision of 21%
 - Reduced to 12% in combination with WW fusion measurement
 - → Could be further reduced with other Z decays

(Need full simulation and WW/ZZ simultaneous fit)

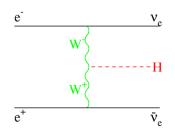
• Note: Precision of a few % can be reached on $\Gamma_{\rm H}$ if one assumes no exotic Higgs decays

"TLEP does not cover the Physics Case" (1)

Precision on H(125) branching fractions, width, mass, ... after 5 years


	ILC	LEP ₃ (4)	TLEP (4)
$\sigma_{\sf HZ}$	2.5%	1.3%	0.4%
σ_{HZ} □BR(H \rightarrow bb)	1.0%	0.5%	0.1%
σ_{HZ} $\square BR(H{ ightarrow}cc)$	6.9%	4% (*)	1.3%
σ _{HZ} □BR(H→gg)	8.5%	4.5% (*)	1.4%
σ_{HZ} \square BR(H \rightarrow WW*)	8.0%	3.0%	0.9%
$σ_{HZ}$ \square BR(H \rightarrow ττ)	5.0%	3.0%	0.9%
σ_{HZ} BR(H \rightarrow ZZ*)	28%	7.1%	3.1%
$σ_{HZ}$ BR(H \rightarrow γγ)	27%	6.8%	3.0%
σ _{HZ} □BR(H→μμ)	-	28%	13%
$\sigma_{WW o H}$	12%	5% (*)	2.2%
Γ_{H} , Γ_{INV}	10%,<1.5%	4%,<0.7%	1.8%, < 0.3%
m _H	40 MeV	26 MeV	8 MeV

- ◆ LEP3 numbers obtained from a CMS simulation x 4, except (*) extrapolated from ILC
 - Need a refined vertex detector for gg and cc BR accurate measurements
- ◆ TLEP numbers extrapolated from LEP3 column ILC numbers with super-duper ILC detector

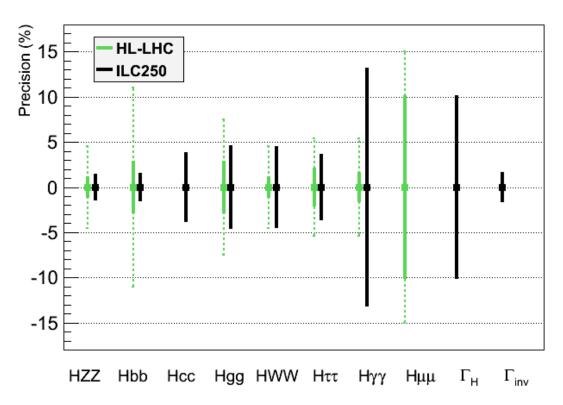

Higgs Measurements at √s ~ 350 GeV

Luminosity similar for ILC and TLEP

- ◆ At each IP: 350 fb⁻¹ over 5 years
 - With possibly 4 detectors at TLEP
- More study of the Hvv final state with H→bb
 - Contribution from HZ : ~ 25 fb

Contribution from WW→H: ~ 25 fb

£ 400	- √s = 350 GeV		ulated Dat	ta_
§ 350		НZ	kground	-
Events / 500 fb 350 350	F 11		esult	-
250			. ₁ .	-
200		<u> </u>		-
150	F 1 1	<u> </u>	j#	-
100	- 1		<i>></i>	
50		hanger of the		
0	0 50 100	150	200	250
		ssing mas		

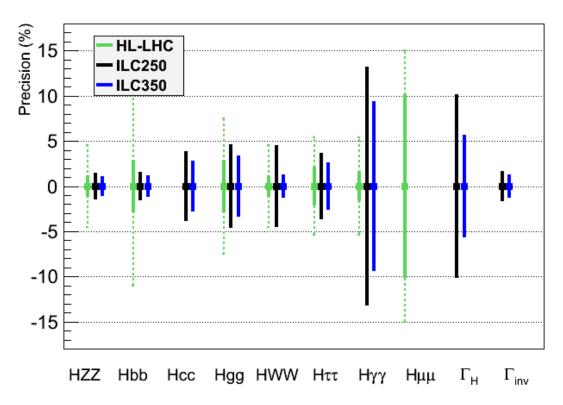

	ILC (250+350)	TLEP (240+350)
$\sigma_{WW ightarrow H}$	12% → 4%	2.2% → 1.5%
Γ_{H}	10% → 5.5%	1.8% → 1.3%

- \rightarrow Improves precision on $\Gamma_{\rm H}$ and HWW coupling
- → Smaller improvement of other σ□BR measurements

"TLEP does not cover the Physics Case" (2)

- Same assumptions as for HL-LHC for a sound comparison
 - No exotic decay, fixed decay width

$$S_{HZ} \propto g_{HZZ}^2$$
, and $S_{HZ} \times BR(H \rightarrow XX) \propto g_{HZZ}^2 g_{HXX}^2 / G_H$

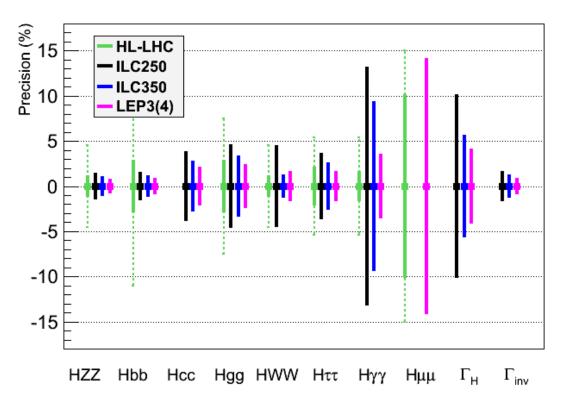


 \rightarrow ILC250 would complement LHC (esp. for $\Gamma_{\rm H}$, $\Gamma_{\rm inv}$, $g_{\rm Hcc}$, $g_{\rm Hbb}$)

"TLEP does not cover the Physics Case" (3)

- Same assumptions as for HL-LHC for a sound comparison
 - No exotic decay, fixed decay width

$$S_{HZ} \propto g_{HZZ}^2$$
, and $S_{HZ} \times BR(H \rightarrow XX) \propto g_{HZZ}^2 g_{HXX}^2 / G_H$

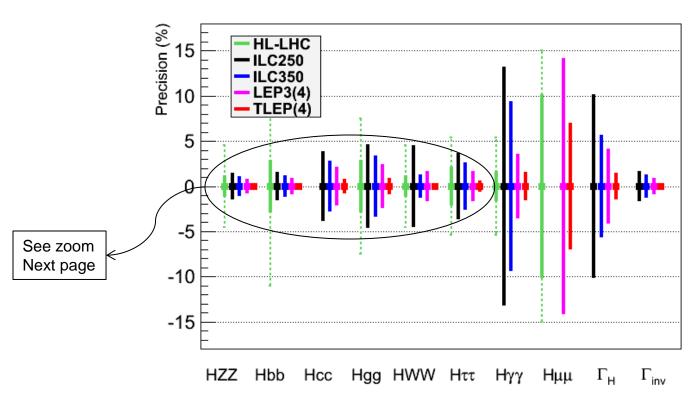


→ ILC250/350 would further complement LHC, but does not cover the physics case

"TLEP does not cover the Physics Case" (4)

- Same assumptions as for HL-LHC for a sound comparison
 - No exotic decay, fixed decay width

$$S_{HZ} \propto g_{HZZ}^2$$
, and $S_{HZ} \times BR(H \rightarrow XX) \propto g_{HZZ}^2 g_{HXX}^2 / G_H$

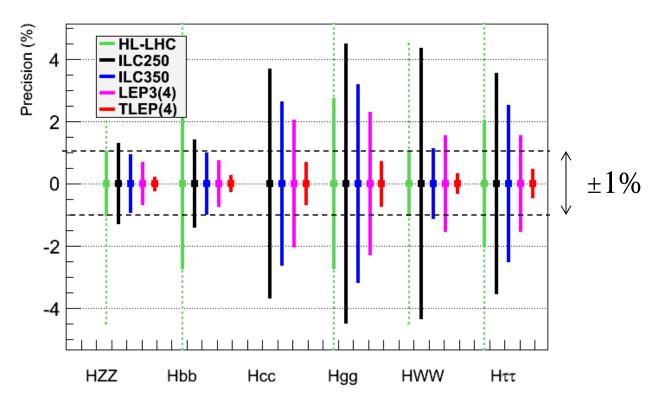


→ LEP3 would be an advantageous back-up: larger lumi, several IPs, smaller cost

"TLEP does not cover the Physics Case" (5)

- Same assumptions as for HL-LHC for a sound comparison
 - No exotic decay, fixed decay width

$$S_{HZ} \propto g_{HZZ}^2$$
, and $S_{HZ} \times BR(H \rightarrow XX) \propto g_{HZZ}^2 g_{HXX}^2 / G_H$

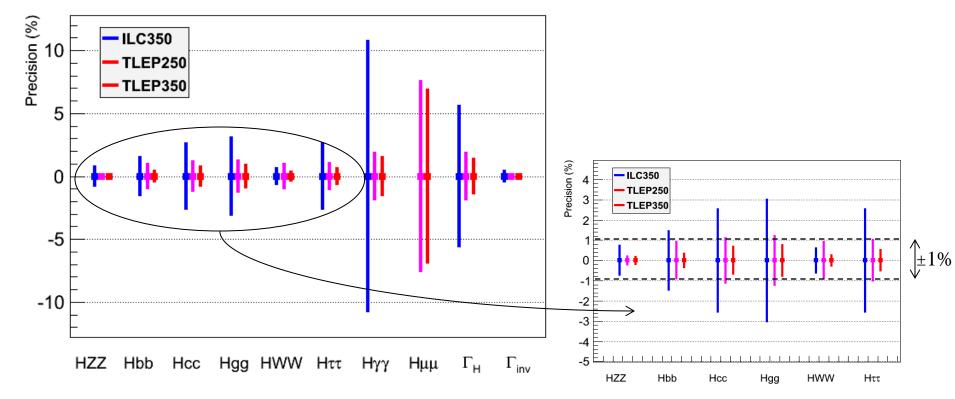


→ TLEP would be a superior option (see zoom next page)

"TLEP does not cover the Physics Case" (6)

- Same assumptions as for HL-LHC for a sound comparison
 - No exotic decay, fixed decay width

$$S_{HZ} \propto g_{HZZ}^2$$
, and $S_{HZ} \times BR(H \rightarrow XX) \propto g_{HZZ}^2 g_{HXX}^2 / G_H$



→ TLEP: sub-percent precision, needed for (multi)-TeV New Physics sensitivity

"TLEP does not cover the Physics Case" (7)

- ullet Same conclusion when $\Gamma_{\rm H}$ is a free parameter in the fit
 - ◆ Plot shown only for ILC350 and TLEP, with an accurate width measurement

$$S_{HZ} \propto g_{HZZ}^2$$
, and $S_{HZ} \times BR(H \rightarrow XX) \propto g_{HZZ}^2 g_{HXX}^2 / G_H$

→ TLEP: sub-percent precision, adequate for NP sensitivity beyond 1 TeV

[19]

"TLEP does not cover the Physics Case" (8)

Table 2.1: Expected performance on the Higgs boson couplings from the LHC and e⁺e⁻ colliders, as compiled from the Higgs Factory 2012 workshop. CLIC numbers from Ref [11-12].

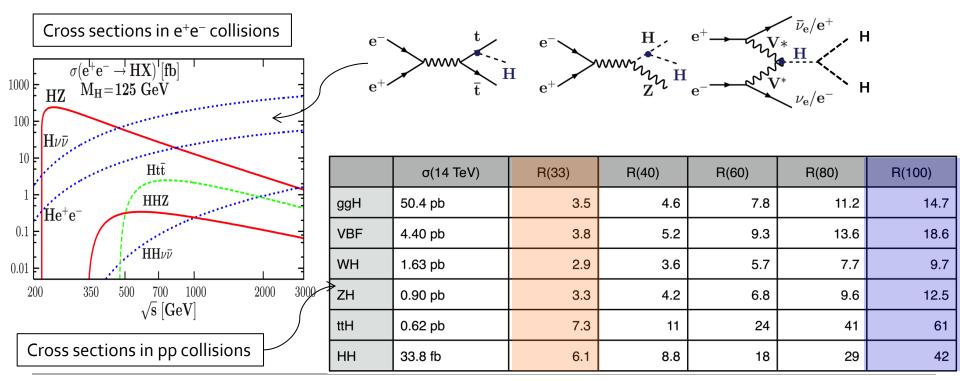
Accelerator →	LHC	HL-LHC	ILC	Full ILC	CLIC	LEP3, 4 IP	TLEP, 4 IP
Physical Quantity	300 fb ⁻¹ /expt	3000 fb ⁻¹ /expt	250 GeV 250 fb ⁻¹	250+350+ 1000 GeV	350 GeV (500 fb ⁻¹) 500 GeV (500 fb ⁻¹) 1.4 TeV (2 ab ⁻¹)	240 GeV 2 ab ⁻¹ (*)	240 GeV 10 ab ⁻¹ 5 yrs (*)
,			5 yrs	5yrs each	5 yrs each	5 yrs	350 GeV 1.4 ab ⁻¹ 3 yrs (*)
N _H	1.7×10^7	1.7×10^{8}	6× 10 ⁴ ZH	10^{5} ZH $1.4 \times 10^{5} \text{ Hvv}$	•	$4 \times 10^5 \text{ ZH}$	$2 \times 10^6 \text{ZH}$
m _H (MeV)	100	50	35	35	~70	26	7
$\Delta\Gamma_{ m H}$ / $\Gamma_{ m H}$			10%	3%	6%	4%	1.3%
$\Delta\Gamma_{\mathrm{inv}}$ / Γ_{H}	Indirect (30%?)	Indirect (10%?)	1.5%	1.0%		0.35%	0.15%
$\Delta g_{ m H\gamma\gamma}$ / $g_{ m H\gamma\gamma}$	6.5 - 5.1%	5.4 – 1.5%		5%	N/A	3.4%	1.4%
$\Delta g_{ m Hgg}$ / $g_{ m Hgg}$	11 - 5.7%	7.5 - 2.7%	4.5%	2.5%	N/A	2.2%	0.7%
$\Delta g_{ m Hww}$ / $g_{ m Hww}$	5.7 - 2.7%	4.5 - 1.0%	4.3%	1%	1%	1.5%	0.25%
$\Delta g_{ m HZZ}$ / $g_{ m HZZ}$	5.7 - 2.7%	4.5 - 1.0%	1.3%	1.5%	1%	0.65%	0.2%
$\Delta g_{ m HHH}$ / $g_{ m HHH}$		< 30% (2 expts)		~30%	~20%		
$\Delta g_{ m H\mu\mu}$ / $g_{ m H\mu\mu}$	< 30%	< 10%			15%	14%	7%
$\Delta g_{ ext{H} au au}$ / $g_{ ext{H} au au}$	8.5 - 5.1%	5.4 - 2.0%	3.5%	2.5%	3%	1.5%	0.4%
$\Delta g_{ m Hcc}$ / $g_{ m Hcc}$			3.7%	2%	4%	2.0%	0.65%
$\Delta g_{ m Hbb}$ / $g_{ m Hbb}$	15 – 6.9%	11 —2.7%	1.4%	1%	2%	0.7%	0.22%
Δg _{Ht t} / g _{Htt}	14 – 8.7%	8.0 - 3.9%		15%	3%		30%

"TLEP does not cover the Physics Case" (9)

A slide from M. Peskin at the 3rd TLEP/LEP3 Worskshop (10-Jan-2013)

The 80 km tunnel envisioned for TLEP can also host a hadron collider (TLHC). This might well be the future of particle physics in Europe.

I will now discuss the estimates of Higgs measurement capabilities of these machines and the conversion of those estimates to measurement errors on the Higgs couplings.


It will be obvious that - weighting all claims equally - TLEP has the best capabilities. It has the highest luminosity, can plausibly support multiple detectors, and can reach energies well above the Higgs threshold. In the following, I will omit the comparison with TLEP in the figures. The final errors would in any event be tiny on the graphs that I will show. These are given in a table at the end of the lecture.

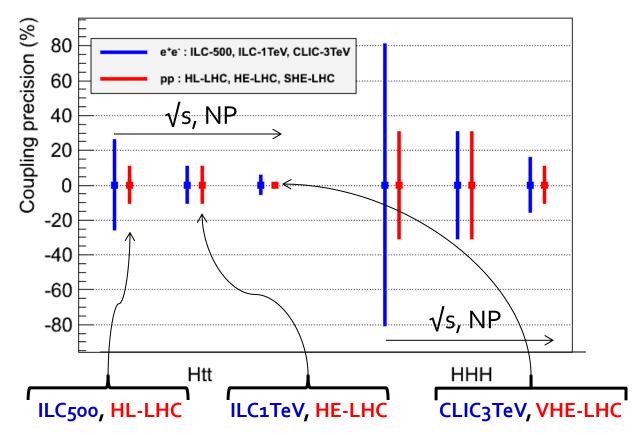
"We need a machine upgradeable beyond 350 GeV" (2)

□ All existing proposals have access to larger \sqrt{s}

[25]

- ◆ To discover New Physics in a direct manner
- To measure more difficult Higgs couplings: g_{Htt} and g_{HHH}
 - ILC350 can be upgraded to ILC500/ILC1TeV, or even to CLIC (3 TeV) [600 MW!]
 - LEP3 can be upgraded to (or preceded by) HE-LHC (33 TeV)
 - TLEP can be upgraded to VHE-LHC (100 TeV)

Patrick Janot

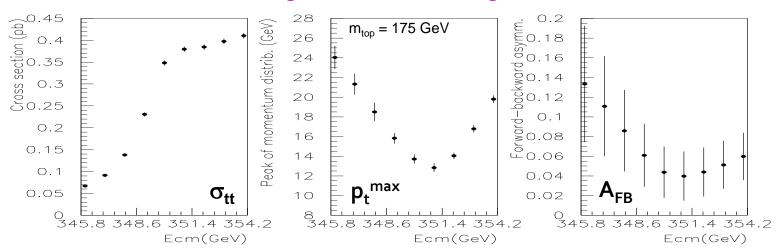

4th TLEP Days CERN, 4-5 April 2013

"We need a machine upgradeable beyond 350 GeV" (3)

Summary for Htt and HHH couplings

[11,12,26,27,28]

Other Higgs couplings benefit only marginally from high energy



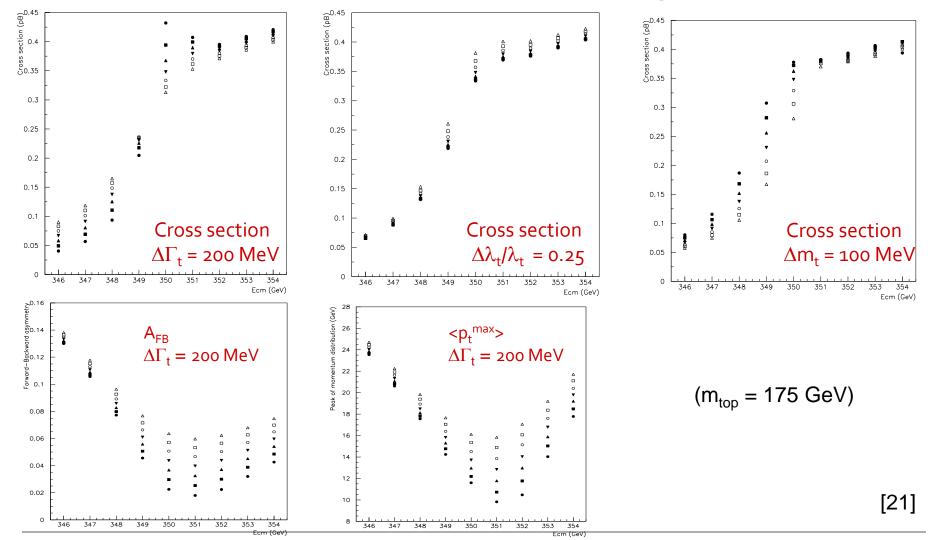
- For similar/larger new physics reach, ttH/HHH precision with pp better than e+e-
 - → ILC500 does not cover the (new) physics case ILC1TeV vastly insufficient

Top Measurements at √s ~ 350 GeV (1)

Scan of the tt threshold

- Observables σ_{tt} , A_{FB} and $\langle p_t^{max} \rangle$ sensitive to m_{top} , Γ_{top} , and λ_{top} (ttH Yukawa coupling)
 - Experimental precision (for ILC)
 - → No beamstrahlung at TLEP is a advantage

• Sensitivity with 300 fb⁻¹ for ILC (expected to be better for TLEP)

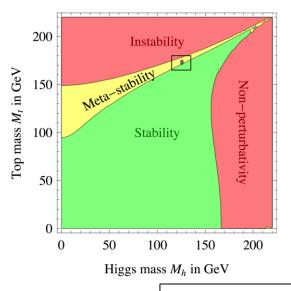

Δm_{top}	$\Delta\Gamma_{top}$	$\Delta \lambda_{ m top}/\lambda_{ m top}$
30 MeV (0.02%)	35 MeV (3%)	30%

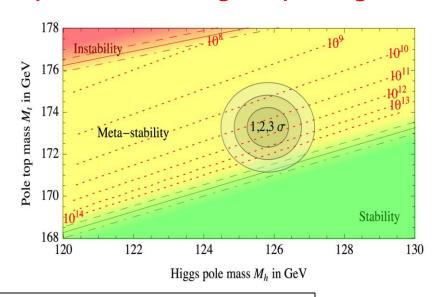
• Studies of rare top decays

[21]

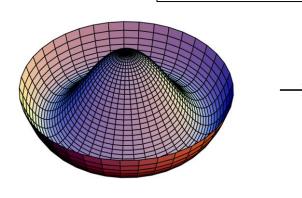
Top Measurements at √s ~ 350 GeV (2)

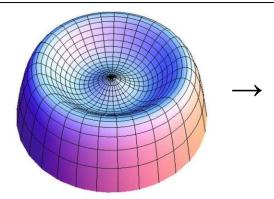
Examples of sensitivities (for ILC-like beamstrahlung)

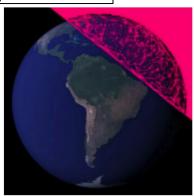



Patrick Janot

4th TLEP Days CERN, 4-5 April 2013


Top Measurements at √s ~ 350 GeV (3)


Measurement of m_{top} perhaps more important than originally thought



Meta-stability favoured at 2σ : need to know $m_{top}\,from\,\,e^+e^-$

Design Study: 2013 - 2018 (1)

- Long list of things to do (not exhaustive)
 - Propose a sound detector design
 - With performance between those of CMS and a ILC detector
 - → Suited for Z, W, H and top studies (with feedback from physics analyses)
 - Particle-Flow friendly
 - Able to take data at the Z pole (30 kHz of Z, 120 kHz of Bhabha)
 - → Forward region, luminosity measurement, ...
 - → Work out the offline and online computing challenges
 - Upgradeable for VHE-LHC
 - ◆ Develop a parametric, a fast, and a full (?) simulation of this detector
 - And an event reconstruction for the fast (and full) simulations
 - → Can use CMS or ATLAS for a while, but then need to move on
 - ◆ Develop a common analysis framework
 - ◆ Understand experimental environment: beam backgrounds, machine/detector interface
 - e.g., Beamstrahlung, ...
 - e.g., By-passes for the accelerator ring

Design Study: 2013 - 2018 (2)

- Long list of things to do (not exhaustive, cont'd)
 - Repeat and improve Higgs properties measurements, develop missing ones
 - σ_{HZ} , σ_{HZ} x BR, $\sigma_{WW\to H}$, $\sigma_{WW\to H}$ x BR, invisble decays, total width, mass, ...
 - Investigate ttH and HHH coupling in pp collisions at 100 TeV
 - Make a global fit towards coupling determination
 - Develop analyses for the top properties measurements
 - Cross section, AFB, momentum distribution, exclusive decays, other?
 - Global fit towards mass, width, Yukawa coupling, α_s , ...
 - ◆ Assess the precision of EW measurements at the Z pole and WW threshold
 - See Alain's talk
 - ◆ Global fit of all centre-of-mass energies outcome
 - Improve the theoretical SM predictions to match expected experimental precisions
 - Higgs branching fractions
 - Electroweak observables
 - Develop accurate Monte Carlo generators accordingly
 - Evaluate the effect of new physics, in a few benchmark models
 - Assess the overall sensitivity of TLEP

Design Study: 2013 - 2017

TLEP design study –preliminary structure for discussion Steering group Institutional board web site, mailing lists, speakers board, etc.. Accelerator **Physics Experiments** 1. Theoretical 1. H(126) properties 1. Optics, low beta, implications and 2. Precision EW alignment and feedbacks model building measurements at the Z 2. Beam beam interaction 2. Precision peak and W threshold 3. Magnets and vacuum measurements, 4. RF system 3. Top quark physics simulations and 4. Experimental 5. Injector system monte-carlos environment 6. Integration w/(SHE)-LHC 3. Combination + 5. Detector design 7. Interaction region complementarity 6. Online and offline 8. Polarization & E-calib. with LHC and other computing 9. Elements of costing machines; global fits