

Opportunities and challenges of TLEP as a precision machine for Electroweak Radiative Corrections

'Will redo te LEP program in a few minutes....'

References:

LEP Z peak paper arXiv:hep-ex/0509008 Phys.Rept.427:257-454,2006

LEP2 Electroweak paper arXiv:1302.3415 [hep-ex] Phys. Rep.

Gfitter Group arXiv:1209.2716v2

The Electroweak Fit of the Standard Model after the Discovery of a New Boson at the LHC

J. Erler and P. Langacker ELECTROWEAK MODEL AND CONSTRAINTS ON NEW PHYSICS PDG dec 20

«and references therein»

Refere also to J. Wenninger's talk at last TLEP meeting, and a number of LEP polarization And energy calibration papers.

LEP3 and TLEP

Circular e+e- colliders to study THE BOSON X(126)

But not only...

LEP3, TLEP

 $(e^+e^- \rightarrow ZH, e^+e^- \rightarrow W^+W^-, e^+e^- \rightarrow Z, [e^+e^- \rightarrow t\bar{t}])$ key parameters

	LEP3	TLEP
circumference	26.7 km	80 km
max beam energy	120 GeV	175 GeV
max no. of IPs	4	4
luminosity at 350 GeV c.m.	-	0.7x10 ³⁴ cm ⁻² s ⁻¹
luminosity at 240 GeV c.m.	$10^{34} cm^{-2} s^{-1}$	$5x10^{34}$ cm ⁻² s ⁻¹
luminosity at 160 GeV c.m.	$5x10^{34}$ cm ⁻² s ⁻¹	2.5x10 ³⁵ cm ⁻² s ⁻¹
luminosity at 90 GeV c.m.	$2x10^{35}$ cm ⁻² s ⁻¹	10 ³⁶ cm ⁻² s ⁻¹

at the Z pole repeating LEP physics programme in a few minutes...

Once the Higgs boson mass is known, the Standard Model has nowhere to go

$$O_i = f(\alpha_{QED}, \alpha_S, G_F, m_Z, m_{top}, m_H)$$

which are now all known ... with some errors

- -- Except in the neutrino sector but how? (usually decouples)
- -- then any deviation from predictions is a sign of new physics

П ті ғр

Experimental Input

Observables:

- Z-pole observables: LEP/SLD results [ADLO+SLD, Phys. Rept. 427, 257 (2006)]
- M_W and Γ_W : LEP/Tevatron [arXiv:1204:0042]
- ▶ *m_t*:Tevatron [arXiv:1207:1069]
- $\Delta \alpha_{had}^{(5)}(M_Z)$ [M. Davier et al., EPJC 71, 1515 (2011)]
- ► m_c, m_b: world averages [PDG, J. Phys. G33, 1 (2006)]
- ► *M_H*: LHC [arXiv:1207.7214, arXiv:1207.7235]

Free fit parameters:

- M_Z , M_H , $\Delta \alpha_{had}^{(5)}(M_Z)$, $\alpha_s(M_Z)$, $\overline{m_c}$, $\overline{m_b}$, m_t
- Scale parameters for theoretical uncertainties δMw (4 MeV), δsin²θ^leff (4.7 · 10⁻⁵)

$M_H \ [GeV]^{(\circ)}$	125.7 ± 0.4	LHC
M_W [GeV]	80.385 ± 0.015	
Γ_W [GeV]	2.085 ± 0.042	levatron
M_Z [GeV]	91.1875 ± 0.0021	
Γ_Z [GeV]	2.4952 ± 0.0023	
$\sigma_{ m had}^0$ [nb]	41.540 ± 0.037	LEP
R^0_ℓ	20.767 ± 0.025	
$A_{ m FB}^{0,\ell}$	0.0171 ± 0.0010	
$A_{\ell}^{(\star)}$	0.1499 ± 0.0018	I SLC
$\sin^2 \theta_{\rm eff}^{\ell}(Q_{\rm FB})$	0.2324 ± 0.0012	1
A_c	0.670 ± 0.027	
A_b	0.923 ± 0.020	SLC
$A_{ m FB}^{0,c}$	0.0707 ± 0.0035	
$A_{ m FB}^{0,b}$	0.0992 ± 0.0016	
R_c^0	0.1721 ± 0.0030	
R_b^0	0.21629 ± 0.00066	
\overline{m}_c [GeV]	$1.27^{+0.07}_{-0.11}$	
\overline{m}_b [GeV]	$4.20^{+0.17}_{-0.07}$	
m_t [GeV]	173.18 ± 0.94	Tevatron
$\Delta \alpha^{(5)}_{\rm had}(M_Z^2) \stackrel{(\bigtriangleup \bigtriangledown)}{\to}$	2757 ± 10	-

$$\begin{aligned} d_{\Gamma_{z}} & \Gamma_{\ell} = \left(1 + \Delta \rho\right) \frac{G_{F}}{24\pi \sqrt{2}} \left(\lambda + \left(\frac{g_{V\ell}}{g_{A\ell}}\right)^{2} \right) \left(\lambda + \frac{3}{4} \frac{d}{\pi}\right) \\ \varepsilon_{z} & \sin^{2} \Theta_{w}^{\text{eff}} c_{w}^{2} \Theta_{w}^{\text{eff}} = \frac{\pi d (M_{z}^{2})}{\sqrt{2} G_{F}} \frac{\lambda}{1 + \Delta \rho} \frac{\lambda}{1 - \frac{\varepsilon_{z}}{c_{w}^{2}}} \\ \varepsilon_{z} & \sigma_{w}^{2} = \frac{\pi d (M_{z}^{2})}{\sqrt{2} G_{F}} \frac{\lambda}{1 + \Delta \rho} \frac{\lambda}{1 - \frac{\varepsilon_{z}}{c_{w}^{2}}} \\ \varepsilon_{vb} & \Gamma_{b} = \left(\lambda + \delta_{vb}\right) \Gamma_{d}^{1} \left(\lambda - \max (\operatorname{sovectow})\right) \\ \varepsilon_{z} & M_{w}^{2} = \frac{\pi d (N_{z}^{2})}{\sqrt{2} G_{F}} \operatorname{din}^{2} \Theta_{w}^{\text{eff}} \cdot \frac{\lambda}{(\lambda - \varepsilon_{z} + \varepsilon_{z})} \\ & \int \sin^{2} \Theta_{w}^{\text{eff}} \text{ is defined from} \\ & \int \sin^{2} \Theta_{w}^{\text{eff}} = \frac{1}{4} \left(\lambda - \frac{g_{v} e}{g_{A_{\ell}}}\right) = \operatorname{din}^{2} \Theta_{w} \operatorname{elff} \\ & \operatorname{obtained} \operatorname{from} \operatorname{asymmetrie}_{\omega} \operatorname{at} \operatorname{HeZ}. \end{aligned}$$

EWRCs

relations to the well measured $G_F m_Z \alpha_{QED}$ at first order:

 $\Delta \rho = \alpha / \pi (\mathbf{m}_{top} / \mathbf{m}_Z)^2$ $- \alpha / 4\pi \log (\mathbf{m}_h / \mathbf{m}_Z)^2$

 $\varepsilon_3 = \cos^2 \theta_w \alpha / 9\pi \log (m_h/m_Z)^2$

 $\delta_{vb} = 20/13 \ \alpha \ /\pi \ (m_{top}/m_Z)^2$

complete formulae at 2d orden including strong corrections are available in fitting codes

e.g. ZFITTER , GFITTER

idel

une 2005

Example (from Langacker, Erler PDG 2011) $\Delta \rho = \epsilon_1 = \alpha(M_z) . T$ $\epsilon_3 = 4 \sin^2 \theta_W \alpha(M_z) . S$

From the EW fit Δρ = 0. 0004+0.0003-0.0004

-- is consistent with 0 at 1 $\!\sigma$

-- is sensitive to non conventional Higgs bosons (e.g. in SU(2) triplet with 'funny v.e.v.s)

-- is sensitive to Isospin violation such as $m_t \neq m_b$

$$\rho_0 = 1 + \frac{3 G_F}{8\sqrt{2}\pi^2} \sum_i \frac{C_i}{3} \Delta m_i^2 , \qquad (10.63)$$

where the sum includes fourth-family quark or lepton doublets, $\binom{t'}{b'}$ or $\binom{E^0}{E^-}$, right-handed (mirror) doublets, non-degenerate vector-like fermion doublets (with an extra factor of 2), and scalar doublets such as $\binom{\tilde{t}}{\tilde{b}}$ in Supersymmetry (in the absence of L-R mixing).

Measurement implies

$$\sum_{i} \frac{C_i}{3} \Delta m_i^2 \le (52 \text{ GeV})^2.$$

Similarly
$$S = rac{C}{3\pi} \sum_{i} \left(t_{3L}(i) - t_{3R}(i) \right)^2,$$

Would be sensitive to a doublet of new fermions where Left and Right have different masses etc...

Note that often EW radiative corrections do not decouple with mass => a very powerful tool of investigation

Electroweak precision observables at e+e- collider

comments :

-- most powerful relationships : m_z vs O_i

-- limitation from uncertainty in $\alpha_{QED} (m_z)$ will affect maximally $m_z vs sin^2 \theta^{eff}_W$ (all Z peak asymmetries) will affect $m_z vs m_W$ interpretation will *not* affect such quantities as $m_z vs \Gamma_{lept}$ and $m_z vs R_b = \Gamma_b / \Gamma_{had}$

-- great premium on m_z and $\Gamma_z\,$ from the line-shape scan

-- $\Gamma_{\rm b}/\Gamma_{\rm had}$ will be obtained from high luminosity at the Z peak.

	Number of Events									
	$Z \rightarrow q \overline{q}$						Z	$\rightarrow \ell^+$	£	
Year	A	D	L	0	LEP	A	D	L	0	LEP
1990/91	433	357	416	454	1660	- 53	36	39	58	186
1992	633	697	678	733	2741	77	70	59	88	294
1993	630	682	646	649	2607	78	75	64	79	296
1994	1640	1310	1359	1601	5910	202	137	127	191	657
1995	735	659	526	659	2579	90	66	54	81	291
Total	4071	3705	3625	4096	15497	500	384	343	497	1724

Table 1.2: The $q\bar{q}$ and $\ell^+\ell^-$ event statistics, in units of 10^3 , used for Z analyses by the experiments ALEPH (A), DELPHI (D), L3 (L) and OPAL (O).

LEP = 16 Million hadronic Z decays, 1.7 Million leptonic decays,

 10^{31} /cm²/s \rightarrow 0.3 Z events per second + 4 times that rate in Bhabhas = 1.5 events per second.

10³⁶ /cm²/s \rightarrow 30'000 events per second **30KHz** 120 KHz with the Bhabhas 10⁷ seconds \rightarrow 3 10¹¹ Z decays. TeraZ

CHALLENGE I design of detector and DAQ system to keep high precision in cross-section measurement

Small angle e+e- is necessary for luminosity determination as large angle e+e- is dominated by Z decays themselves

Statistical errors will reduce nicely can we reduce systematics also?

$\Delta m_{\mathbf{Z}} \approx \frac{1}{2} \cdot \Delta (E_{+2} + E_{-2})$ and $\Delta \Gamma_{\mathbf{Z}} \approx \frac{\Gamma_{\mathbf{Z}}}{E_{+2} - E_{-2}} \Delta (E_{+2} - E_{-2})$.

- -- Energy calibration
- -- Luminosity measurements
- -- Cross-section measurements

Error dominated by systematics on luminosity.

Beam Polarization at TLEP-Z

injecting polarized electrons and positrons? A discouraging parameter against this is the spin tune $v_s = E_{beam}$ [GeV]/0.4406486 =103.5 at the Z peak. Crossing all these resonances in the acceleration will kill polarization for sure.

→ Build up polarization by Sokolov Ternov effect at high energy.

$$\tau = A \frac{\hbar^2}{mce^2} \left(\frac{mc^2}{E}\right)^2 \left(\frac{H_0}{H}\right)^3$$

where A is the limiting degree of polarization (92.4%) and τ is the polarization time.

The polarization time at the Z peak was **300 minutes in LEPI** It will be $300x(80/27)^3 \sim 9'000$ minutes or **150 hours at TLEP-Z – ouch.**

we can use wigglers and we must be patient.

Polarization Wigglers as they were designed for LEP I (A.B and John Jowett, in Polarization at LEP, CERN Yellow report 88-06)

Asymmetric B- B+ B- 12 magnets in straight sections \rightarrow 65 m total max $B_+ \simeq 1.3$ T, $L_+ = 0.65$ m, $L_- = 4.0$ m, $L_g = 0.25$ m.

3 kW of SR locally per mA \rightarrow 4 MW extra power at the Z.

~100 minutes polarization time.

→ Will also increase the energy spread, so practical compromise has to be found

LEP3/TLEP parameters -1 $\frac{\text{soon at SuperKEKB:}}{\beta_x^*=0.03 \text{ m}, \beta_Y^*=0.03 \text{ cm}}$

	LEP2	LHeC	LEP3	TLEP-Z	TLEP-H	TLEP-t
beam energy Eb [GeV]	104.5	60	120	45.5	120	175
circumference [km]	26.7	26.7	26.7	80	80	80
beam current [mA]	4	100	7.2	1180	24.3	5.4
#bunches/beam	4	2808	4	2625	80	12
#e-/beam [10 ¹²]	2.3	56	4.0	2000	40.5	9.0
horizontal emittance [nm]	48	5	25	30.8	9.4	20
vertical emittance [nm]	0.25	2.5	0.10	0.15	0.05	0.1
bending radius [km]	3.1	2.6	2.6	9.0	9.0	9.0
partition number J_{ϵ}	1.1	1.5	1.5	1.0	1.0	1.0
momentum comp. α_{c} [10 ⁻⁵]	18.5	8.1	8.1	9.0	1.0	1.0
SR power/beam [MW]	11	44	50	50	50	50
β* _x [m]	1.5	0.18	0.2	0.2	0.2	0.2
β* _v [cm]	5	10	0.1	0.1	0.1	0.1
σ* _x [μm]	270	30	71	78	43	63
σ* _v [μm]	3.5	16	0.32	0.39	0.22	0.32
hourglass F _{hg}	0.98	0.99	0.59	0.71	0.75	0.65
ΔE ^{SR} loss/turn [GeV]	3.41	0.44	6.99	0.04	2.1	9.3
SuperKEKB:ε _ν /ε _x =0.25%	5					

LEP2 was not beam-

	LEP2	LHeC	LEP3	TLEP-Z	TLEP-H	TLEP-t
V _{RF,tot} [GV]	3.64	0.5	12.0	2.0	6.0	12.0
δ _{max,RF} [%]	0.77	0.66	5.7	4.0	9.4	4.9
ξ_x/IP	0.025	N/A	0.09	0.12	0.10	0.05
ξ _v /IP	0.065	N/A	0.08	0.12	0.10	0.05
f _s [kHz]	1.6	0.65	2.19	1.29	0.44	0.43
E _{acc} [MV/m]	7.5	11.9	20	20	20	20
eff. RF length [m]	485	42	600	100	300	600
f _{RF} [MHz]	352	721	700	700	700	700
δ ^{SR} _{rms} [%]	0.22	0.12	0.23	0.06	0.15	0.22
σ ^{SR} _{z,rms} [cm]	1.61	0.69	0.31	0.19	0.17	0.25
$L/IP[10^{32} cm^{-2} s^{-1}]$	1.25	N/A	94	10335	490	65
number of IPs	4		/	/	/	/
Rad.Bhabha b.lifetime [min]	360	N/A	18	74	32	54
Υ _{BS} [10 ⁻⁴]	0.2	0.05	9	4	15	15
n _v /collision	0.08	0.16	0.60	0.41	0.50	0.51
$\Delta \delta^{BS}$ /collision [MeV]	0.1	0.02	31	3.6	42	61
$\Delta \delta^{\rm BS}_{\rm rms}$ /collision [MeV]	0.3	0.07	44	6.2	65	95

LEP data for 94.5 - 101 GeV consistently suggest a beam-beam limit of ~0.115 (R.Assmann, K. C.)

Operation mode for lineshape measurement

operation mode probably different for the Z line shape measurement, for high intensity peak measurements and for longitudinal polarization measurements

Proposed for line shape measurement :

it is important to keep a number of bunches transversally polarized to perform the calibration continuously. *These bunches need not be colliding.*

> Keep some fraction of the 2625 bunches not colliding and measure continuously.

Thanks to synchrotron oscillations the average energy of colliding beams cannot be different to that of circulating beams (this can be checked by beam position in dispersion zones)

Spin matching techniques of LEP can be used (low beta, solenoids, imperfections, etc..) hopefully easier **if we careful thought ahead of time.**

This should allow the systematic error to be reduced below the 100 keV/beam level per measurement , with improvement expected as 1/sqrt(N_{meas})

Other line shape uncertainties and systematic errors

-- statistics

LEP1 $\rightarrow \Delta \Gamma_z$ = 3 MeV with one year of data TLEP $\rightarrow \Delta \Gamma_z$ = O(10 keV)...! (probably does not need one full year!) Clearly systematics will be the issue.

- -- absolute cross-section has an impact on $\Gamma_{inv} / \Gamma_{\ell} = N_v \Gamma_v / \Gamma_{\ell}$ This is dominated by calculations of Bhabha scattering Improvement requires new calculations of higher order QED corrections
- -- dependence of acceptance on E_{CM} (small if efficiency is high)

-- understanding of non-resonant background

- ightarrow was statistical analysis
- → probably requires scanning the resonance over a broader range of E_{CM} to idenify this component more precisely.

Easy to improve $\Delta\Gamma_z\,$, much less easy to improve $\,N_{\nu}\,$

Helicity effects in
$$e^{\dagger}e^{-} \rightarrow f^{\dagger}f$$

(L)
 $e^{-} e^{\pm} g_{Le}^{2}$
 $f^{\pm}e^{\pm} \rightarrow f^{\pm} g_{Le}^{2} (1 + \cos^{2})^{2}$
 $f^{\pm}e^{\pm} \rightarrow f^{\pm} g_{Rf}^{2} (1 + \cos^{2})^{2}$
 $f^{\pm}e^{\pm}e^{\pm} g_{Rf}^{2} (1 + \cos^{2})^{2}$
 $f^{\pm}e^{\pm}e^{\pm} g_{Rf}^{2} (1 + \cos^{2})^{2}$
 $f^{\pm}e^{\pm}e^{\pm}e^{\pm} g_{Rf}^{2} (1 + \cos^{2})^{2}$
 $f^{\pm}e^{\pm}e^{\pm}e^{\pm} g_{Rf}^{2} (1 + \cos^{2})^{2}$
 $f^{\pm}e^{\pm}e^{\pm}e^{\pm}g_{Rf}^{2} = g_{Rf}^{2} (1 + \cos^{2})^{2}$
 $f^{\pm}e^{\pm}e^{\pm}g_{Rf}^{2} = g_{Rf}^{2} (1 + \cos^{2})^{2}$
 $f^{\pm}e^{\pm}g_{Rf}^{2} = g_{Rf}^{2} g_{Rf}^{2} + g_{Rf}^{2}$
 $f^{\pm}e^{\pm}g_{Rf}^{2} = g_{Rf}^{2} g_{Rf}^{2} + g_{Rf}^{2} = g_{Rf}^{2} g_{Rf}^{2} + g_{Rf}^{2}$
 $f^{\pm}e^{\pm}g_{Rf}^{2} = g_{Rf}^{2} g_{Rf}^{2} + g_{$

Longitudinal polarization

ZZZZZZZZ polarization is transverse it needs to be rotated in the direction of the beam to become longitudinal in the IP region and again the same transverse in the next arcs

→ the art of spin rotators (there have been many proposals, probably best are the Hera rotators)

For longitudinal polarization experiments we need to keep the beam **polarized** while in collisions. Experiments at LEP showed that this was possible -- >

Top up mode should provide stable operation which is essential for the orbit corrections, but will dilute the beam polarization as $P = (1/\tau_P) / (1/\tau_P + 1/\tau_{lumi})$

10¹¹ Z @ P=40%

TLEP

 \rightarrow towards $\Delta \sin^2 \theta_w^{\text{eff}} = 10^{-6}$ this is two order manitude better than the present 0.00016

Unlike the Z line shape re-measurement which could be a few weeks of running this is more likely to be **a one year affair.**

EXPERIMENTS ON BEAM-BEAM DEPOLARIZATION AT LEP

R. Assmann*, A. Blondel*, B. Dehning, A. Drees°, P. Grosse-Wiesmann, H. Grote, M. Placidi, R. Schmidt, F. Tecker[†], J. Wenninger

Figure. 3. Polarization level during third experiment

PAC 1995

- With the beam colliding at one point, a polarization level of 40 % was achieved. The polarization level was about the same for one colliding and one non colliding bunch.
- It was observed that the polarization level depends critically on the synchrotron tune : when Q_s was changed by 0.005, the polarization strongly decreased.

experiment performed at an energy of 44.71 GeV the polarization level was 40 % with a linear beam-beam tune shift of about 0.04/IP. This indicates, that the beam-beam depolarization does not scale with the linear beam-beam tune shift at one crossing point. Other parameters as spin tune and synchrotron tune are also of importance.

This was only ever tried 3 times! Best result: P = 40%, $\xi_y^* = 0.04$, one IP Assuming 4 IP and $\xi_y^* = 0.01$

reduce luminositiy x 10 still, 10¹¹ Z @ P=40%

Measurement of A_{LR}

electron bunches $1 \leftarrow 2 = 3$ 4⇐ positron bunches 1 $2 \Rightarrow 3$ $4 \Rightarrow$ σι σ2 σ3 cross sections σ_4 $N_1 N_2 N_3 N_4$ event numbers $\sigma_1 = \sigma_u \left(1 - P_e^- \Lambda_{LR}\right)$ $\sigma_2 = \sigma_{\rm H} \left(1 + {\rm P}^+_{\rm c} \Lambda_{\rm LR} \right)$ $\sigma_{\chi} = \sigma_{\mu}$ $\sigma_4 = \sigma_{\rm m} \left[1 - {\rm P}^+_{\rm e} {\rm P}^-_{\rm e} + \left({\rm P}^+_{\rm e} - {\rm P}^-_{\rm e} \right) \Lambda_{\rm LR} \right]$

Verifies polarimeter with experimentally measured cross-section ratios

statistics

 $\Delta A_{LR} = 0.0025$ with about 10⁶ Z⁰ events, $\Delta A_{LR} = 0.000015$ with 10¹¹ Z and 40% polarization in collisions.

 $\Delta sin^2 \theta_w^{eff}$ (stat) = O(2.10⁻⁶)

$\mathbf{M}_{\mathbf{W}}$

Experimentally main irrecucible systematic is due to beam energy (others are extracted statistically)

LEP2 4 10⁴ W pair events $\rightarrow \Delta m_w = 23$ MeV (of which 20 is stat, 10 is E_beam)

TLEP 4 10⁷ W pairs $\rightarrow \Delta m_w < 1 \text{ MeV}$ (quid of energy calbration?)

Polarization at LEP2

- Under optimal machine conditions, a polarization P_{\perp} of 57% was measured at LEP around the Z resonance.
- □ In practice most E calibrations were performed with P_{\perp} ~5-15%.
- □ Above the Z the maximum polarization dropped quickly as the energy spread (and therefore v_s spread) became large(r).
 - No P_{\perp} was ever measured above 60 GeV.

Beam Polarization at TLEP-W

It is generally agreed that the main limitation to obtain polarization at LEP2 was beam energy spread

 $v_s = \frac{E}{440.6486(1) \text{[MeV]}}$

Energy spread should remain small so that $\Delta\nu_{s}<<1$

At TLEP the larger radius of the machine should help.

 $\Delta E \propto E^2 / V \rho$

The spin tune spread of LEP2 at 61 GeV is equal to that of TLEP at 81 GeV 🙂

 → If the machine is as well aligned etc... as LEP2 (and we should aim to do much better!)
 Polarization for energy calibration at W threshold should be straightforward.

Table 1: Sample of TLEP Physics performance goals.

Physics region	Ebeam	E _{CM}	Luminosity	Beam	Physics goals	
	(GeV)	(GeV)	in each of 4 experiments $cm^{-2}s^{-1}$	Polarization		
Z peak	44-47	88-94	10 ³⁶	Transverse for energy calibration >5%	One year of data taking > 3×10^{11} Z decays per e > 6×10^{10} bb pairs per e Z mass and width to 0. $\Delta \rho_{\ell}$ to $\leq 510^{-5}$; Improvements in R _{had}	g: experiment 1 MeV/c^2 $R_b \Gamma_{inv}$, etc
Z peak	45.6	91.2	$>10^{35}$	Longitudinal: 50%	$A_{LR} A_{FB}^{Pol}; \sin^2 \theta_{\ell}^{eff}$ to	$> \le 310^{-6}$
W pair threshold and maximum	80-90	160- 180	2.10 ³⁵	Transverse for calibration >5% (useful, but not compulsory)	One year of data takin W mass to <1 MeV/c ²	g:
ZH threshold and cross-section maximum	110-125	220- 250	5.10 ³⁴	Not required	5 years of data taking maximum (combined years at the tt threshold years at the threshold years	at ZH with 5 hold). hts/expt % % % % %
tt threshold and High Energy (E _{CM} > 340 GeV)	170- 180	340- 360	7.10 ³³	Not required	5 years of data taking: Top quark mass to 100 3.5 10 ⁴ Hvy events) MeV/c^2

Experimental errors at TLEP will be 20-100 times smaller than the present errors.

BUT can be typically 10 -30 times smaller than present level of theory errors

Would love similar error breakdown for Γ_z , Γ_{ee} , R_b etc...

Z

Table 2 Preliminary TLEP design study structure for discussion

TLEP design study –p for disc	reliminary structure sussion	International			
Institutional board	Institutional board web site, mailing lists, speakers board, etc				
Accelerator	Experiments	Physics			
 Optics, low beta, alignment and feedbacks Beam beam interaction Magnets and vacuum RF system Injector system Integration w/(SHE)-LHC Interaction region Polarization &E-calib. Elements of costing 	 H(126) properties Precision EW measurements at the Z peak and W threshold Top quark physics Experimental environment Detector design Online and offline computing 	1. Theoretical implications and model building 2. Precision measurements, simulations and monte-carlos 3. Combination + complementarity with LHC and other machines ; global fits			

TLEP

Outlook

We can improve EWRC sensitive observables at TLEP around the Z resonance and Mw by factors between 20 and 100. This provide a very powerful probe to new physics

-- Z peak observables can be measured with fantastic statistics. b and hadron width, tau polarization, forward backward asymmetries

-- Beam polarization is critical for line shape and polarized asymmetry. At TLEP, polarization time is 150 hours. Polarization wigglers are necessary, also, polarimeters and spin rotators, etc...

-- new measurements of the Z mass and widths (electron and neutrino) require line shape precision scan – unique to a circular machine. **aim:** <<0.1 MeV on m_z , Γ_z HC---

-- Longitudinal polarization should be feasible at ~40% level or more with reduced luminosity Top-up injection should help a lot. $\operatorname{aim} \Delta \sin^2 \theta_w^{\text{eff}} = 2 \ 10^{-6}$.

-- there are many other systematic errors related to luminosity measurement and detection uncertainties which need to be addressed as well. **B tagging!**

-- beam polarization at WW feasible thanks to larger radius of TLEP $\dim \Delta m_w < 1 \text{ MeV}$

-- suggest a workshop/working groups dedicated for this.