

Reminder: Disclaimer (from last workshop, still holds)

- What follows is the result of few days of reading,
 "brainstorming" and (mainly) coffee conversations
- It is premature to talk about detector <u>design</u>
- It is however important to bootstrap the process, initiate the discussion
 - So that aspects of the machine design that may affect experiments are not overlooked
 - To identify possible showstoppers or critical aspects
 - Thanks to P. Janot, M. Zanetti, F. Zimmermann for useful input Errors and misconceptions are entirely my responsibility

Guidelines

- Design caverns, services and detectors (at least the basic structure) to be re-used in pp collisions (as new)
- TeraZ sets the scale for DAQ (2600 bunches)
 - also forward EM calorimetry (lumi)
- TLEP(H) sets the scale for precision (tracker, ECAL, particle flow, b-tagging)
- X-LHC sets the scale for magnetic field, calorimeter depths, tracker pT reach
- A tenable cost sets the ultimate scale for what can be done
 - Given technology evolution to be expected, targeting detectors at same total final cost as ATLAS/CMS seems realistic

But first, a proposal

...remember the Tevatron punchline about the "Energy Saver"?

TLEP: the Money Saver

A Holistic Look (in an ideal world)

- Experimental Infrastructure (civil engineering, Interaction point design, size of the caverns) are tailored for the ultimate pp collider (100 TeV, 5E35)
- Modular detector design allows to evolve them from TLEP-H to XLHC
 - By adding or replacing, or simply turning on features
 - Pay attention to not introduce brick walls
- "Options" (TeraZ, GigaWW) are a clear way to foster the above (e.g. TeraZ 2600 bunches, lumi ~1E36!!!)
- Some design choices will lend themselves better than others to this modular, evolutionary scheme
 - Identify them and promote R&D in that direction

Not quite a detector issue but...

...a subject that I hold dear:
don't drill a hole in our detectors!

Interaction Points

- Top-up ring position with respect to detector
 - Relative position
 - Passthrough
 - Horror scenarios: all detectors have a circular ... cm(?) hole in the calorimeter
 - Bypass option and implications
 - Even more exotic possibilities ?
- Final focusing quads position and size
 - Impact on detector design
 - Options for the magnet

Passthrough

integration of a D1 magnet with the focusing quads?

Bypass

TLEP and XLHC detectors

Magnetic Structure

- Solenoid: at XLHC strong fields and large lever arm will be needed to preserve *some* momentum resolution for multi-TeV tracks
- Large bore diameter solenoids would allow bigger lever arm
 - large tracking detectors...
 - R&D needed, cost, channel count ⊗
 - ◆ Initial cost of calorimeters higher ⊗ due to larger volume to cover
 - ◆ Can be partially compensated (in the active material) by reducing granularity as showers will be "opened up" further ☺
 - ◆ Absorber cost will definitely increase ☺
- Alternative magnetic structures (a la ATLAS) would allow staging the toroids

Magnet

- TLEP-H/W/Z require a modest magnetic field
 - No point in making a more compact tracker
 - Because of power distribution, cooling and readout issues
- However...
 - ECAL/HCAL MUST be inside the solenoid
 - Only way to have acceptable resolution for photons
 - Support PF jet algorithms
- Current experience: CMS (similar parameters as ILC detectors)
 - Larger bore diameters deemed to be challenging to engineer
 - Is this going to evolve in the future? (new SC materials, progress in cryogenics, experience with operating current SC magnets,...)

Tracking

- □ Momentum resolution $\sigma(p_T)/p_T^2$ better than 10⁻⁴ for TLEP-H
 - Very different situation at TLEP and XLHC
 - TLEP: tradeoff between B strength and sufficient number of high resolution points
 - TPC an option... (breaks down at TeraZ)
 - XLHC: multi-TeV objects -> play with lever arm (N points) and B strength
- An all-silicon tracker seems clearly preferable
 - Moderate number of high-precision points (not different in scale from CMS)
 - Forward tracking more important than at LEP
 - Challenges again are lightweight support structure and services (power distribution, cooling)
 - R&D for LHC phase2 detectors certainly relevant
 - Optimized power distribution, use of store capacitors
 - Compact large capacitance dev for portables and other applications
 - Front-end electronics with longer pipelines, low-power optical systems
 - Cooling in relationship to all of the above
- TPC (with solid-state readout) is an option for TLEP-H
- Again many technological challenges and ultimately a large number of channels to readout and process

Tracking

- Relatively compact silicon tracker (or TPC) sufficient for TLEP (and all its variations) – material budget fundamental
 - Cooling, infrastructure
 - Power distribution and readout -> low-power rad-hard VFE, onchip photonics (lots of fun R&D)
 - Will pay off already at the TeraZ stage
- Additional layers can be added (resolution ~ 1/L²√N) -> large silicon surfaces... R&D needed, cost, channel count ☺
- LEP-H poses most stringent requirements on i.p. resolution (e.g. c-tagging)
- Unlike LC or LHC, beam structure makes readout relatively "easy"
 - Already no longer the case for TeraZ (2600 bunches, 100ns)
 - Always design for the most demanding option
 - keeping evolutionary/modular architecture open

Vertex Detector

- Vertex detector capable of transverse i.p. resolution of order 5 μm in barrel (~10GeV)
 - For b and c tagging
 - Single point resolution of the same order and >4 layers required
 - For comparison, CMS ~20 μm
- So... flavor tagging is the real challenge: extreme demand in impact parameter resolution
 - Beam pipe material
 - Innermost layer radius
 - Lightweight construction to minimize multiple scattering

$$\sigma(d) = \sqrt{(a^2 + b^2/p^2 \sin^3 \theta)}$$

- Good point resolution (a) useless if m.s. term (b) large
- ILC/CLIC R&D
 - Thin sensors
 - lightweight CF structures
 - Open structure with gas flow cooling
- Must look into: power distribution, low-power VFE, integrated on-chip cooling and photonics
- ∼10⁹ channels: readout a challenge

Calorimetry

- ECAL intrinsic resolution better than 1% @60GeV
 - To reconstruct H->γγ
- Jet energy resolution
 - Integrate particle-flow techniques
 - Less stringent requirements on HCAL resolution
 - Good granularity required (ECAL)
 - Shower barycenter determination more important than standalone resolution (HCAL)
 - Goal of $\sigma(E)/E$ better than 4% for PF jets
- ECAL: Moderate increase in transverse segmentation (wrt LHC detectors) sufficient to reach necessary resolutions for LEP-H
 - Can be profited of in pp
 - Longitudinal segmentation, what are the real needs?
- HCAL: Increasing the solenoid field and/or radius may help a bit the Particle Flow algorithms by separating the charged/neutral components further

Calorimetry

- ILC/CLIC Tungsten/SiPad multilayer sampling ECAL with extreme segmentation (CALICE)
 - Probably insufficient resolution for H->γγ (S~15%, C~1%)
 - But attractive as an evolutionary solution for XLHC
 - Study tradeoff for segmentation/number of channels
- □ PbWO₄ crystals (CMS)
 - Cost, readout, transverse segmentation
 - Containment and transparency for XLHC
 - Longitudinal segmentation ☺
- Lar???
- HCAL challenge: reasonable resolution and granularity sufficient to support PF algorithms
 - Analog vs. digital HCAL
 - Absorber material, photodetectors
 - Combined analog and binary readout? On-detector shower barycenter?
- Clearly should explore other solutions as well

Muons

- The real challenge is for XLHC
- Muon Identification >95%
 - Envision modular extensions to cover XLHC (multi-TeV muons)

DAQ and (Trigger)

- Can we read out and record data from a detector with ~10⁹-10¹⁰ channels?
- Do we need a trigger ?
- TLEP-H/T
 - Low occupancy, sparse readout, zero suppression, Bx rate ~100 kHz -> can and should read out every bunch crossing!
 - Rate of interesting events (including background) <1 kHz
 - Event size ?: 1-10MB depending on quality of zero-suppression/compression algorithms affordable at front-end
 - -> switched networks with aggregated b/w up to 1TB/s (e.g. planned 1MHz readout for LHC phase 2 CMS)
 - Technology is in hand today (cost ☺)
 - Also explore other possibilities: e.g. integrate over (multiple) turn
- Trigger
 - Front-end electronics built to support it wherever possible
 - optical fast paths, configurable pipelines...
 - To be looked at for TeraZ and beyond
 - Privilege read out speed and software HLT wherever possible

BLUEDEPTH

- a BLUEprint Detector Proposal for TLEP and the next Hadron collider
- Identify (one or two) common structure(s) for all potential design
- Identify two or three technologies to study in depth for each subdetector
- Parametric simulations of core parameters (coverage, resolution, efficiencies) (Delphes)
- Detailed simulation of one or two more promising alternatives (GEANT?)
- Build on the experience and infrastructures of the current LHC detectors (simulation, sw infrastructure)
- Always include a modular evolution for the proton machine in the design

21

BLUEDEPTH@TLEP

BLUEDEPTH@XLHC

- Many many aspects not even touched, for example
 - Muon detectors
 - Small angle coverage
 - Luminosity detector(s)
 - Complexity, reconstruction, computing...
 - Just to name a few...

Summary

- Start the detector studies... how ?
 - Define a skeleton blueprint detector
 - prepare a small number of variations, use simulation to evaluate physics performance on selected benchmark processes
 - Privilege areas not accessible to LHC
 - Choose specific benchmarks in a binary decision tree to rule out alternative options
 - Use fast parametric simulation (Delphes ?)
 - Converge on one or two designs to simulate in detail
 - GEANT simulation and use existing reconstruction framework
 - Have a clear plan for the evolution of the detector towards the pp machine

