# TLEP: effect of cavity impedance for operation at high current and low energy

N. Mounet and E. Métral

Acknowledgments: X. Buffat, A. Burov, R. Calaga, V. Danilov, B. Holzer, W. Höfle, J. Jowett, M. Lamont, K. Li, B. Salvant, D. Schulte, F. Zimmermann

## **Outline**

- Introduction
- New code to study impedance + damper
- The LEP case
- A first preliminary study of TLEP stability
- Conclusion

### Introduction

- TLEP: "Triple LEP" → 80 km circumference.
- Most critical version for impedance: "low" energy TLEP-Z
  - > 45.5 GeV / beam,
  - 2625 bunches / beam,
  - > 1.18 A / beam  $\rightarrow$  0.45 mA / bunch.
- LEP was limited by TMCI (transverse mode coupling instability), due to cavities impedance
  - → need to study TMCI for TLEP,
  - → can a transverse feedback help or even suppress TMCI (A. Burov 2012 results) ?

## How are we going to study this?

- Using a new code made up of a set of old methods
  - → DELPHI (for Discrete Expansion over Laguerre Polynomials and Headtail modes),
- Based on solution of Sacherer integral equation (Chao's book, Eq. 6.179)
   written as an eigenvalue problem:
  - → using a decomposition over Laguerre polynomials of the radial function (idea from Besnier 1974, used then by Y. Chin in code MOSES - 1985),
  - → including azimuthal & radial modes, and mode coupling (like MOSES),
  - → including generalization to any kind of impedance, multibunch effects and damper (here we use a flat damper model, i.e. with constant wake),
  - → not including Landau damping,
  - → synchrotron radiation damping taken into account simply by comparing instability rise time with damping time (very slow anyway for the studies here).

DELPHI vs MOSES, for single-bunch TMCI without damper (LEP RF cavities modelled as a broadband resonator):



DELPHI vs MOSES, for single-bunch TMCI without damper (LEP RF cavities modelled as a broadband resonator):



 DELPHI vs MOSES, single-bunch without damper (LEP RF cavities modeled as a broadband resonator):



Imag. part, Q'=22

 DELPHI vs Karliner-Popov, single-bunch with damper (VEPP-4, broadband resonator):



Real, part,

Q'=0

 DELPHI vs Karliner-Popov, single-bunch with damper (VEPP-4, broadband resonator):



Intensity [mA]

Imag. part, Q'=0

DELPHI vs Karliner-Popov and HEADTAIL (macroparticle simulation code –
 G. Rumolo et al), single-bunch with damper (VEPP-4, broadband resonator):

Imag, part, Q'=-7.5

## DELPHI is closer to HEADTAIL.

Karliner-Popov is more stable → due to their non flat damper ? (we cannot check because Karliner-P damper parameters are not provided).



## What about LEP TMCI?



Figure 12. Measurement of the 0 and -1 modes of oscillation as a function of the bunch current at LEP for  $Q_s = 0.082$ . As the current increases the two modes approach until they merge at the instability threshold.

Bunch current (mA)

- Impedance model: two broad-band resonators (RF cavities + bellows), the rest is relatively small (<10%) [G. Sabbi, 1995].
  - → experimental tune shifts and TMCI threshold (from simple formula) well reproduced,
  - → threshold slightly less than 1mA.

#### Transverse feedback:

- First idea: reactive feedback (prevent mode 0 to shift down and couple with mode -1) → not more than 5-10 % increase in threshold, despite several attemps and models developed [Danilov-Perevedentsev 1993, Sabbi 1996, Brandt et al 1995],
- Another idea: resistive feedback, first found ineffective [Ruth 1983], tried at LEP but never used in operation. Recently (2005) thought to be a good option by Karliner-Popov with a possible increase by factor ~5 of TMCI threshold → can we confirm?

## LEP

LEP without damper (typical LEP2 parameters)

Imag. part, Q'=0

Note: we had to change the bunch length (1.3cm instead of 1.8cm) to match Karliner-Popov's result.



### LEP

LEP with resistive damper (typical LEP2 parameters)

Imag. part, Q'=-22

Again, we see that Karliner-Popov model gives more stability than DELPHI

→ we cannot reproduce their result.



## LEP: stability analysis with resistive damper

Instability threshold vs. Q' and damper gain (up to 10 turns) with DELPHI:

Essentially, one cannot do better than the natural (i.e. without damper) TMCI threshold.



## LEP: stability analysis with reactive damper

Instability threshold vs. Q' and damper gain (up to 10 turns) with DELPHI:

We can do a little better than the "natural" TMCI.

→ seems to match (qualitatively) LEP observations.



### **TLEP**

- Parameters chosen (TLEP-Z option, 45.5 GeV):
  - > Optics: [Q]=640,  $\beta$ =50 m,  $\alpha_p$ =9.10<sup>-5</sup> (B. Holzer, F. Zimmermann)
  - PRF:  $Q_s = 0.34$ ,  $\sigma_z^{RMS} = 1.9$  mm (F. Zimmermann),
- RF cavity impedance (600 m → most pessimistic option):
  - One cavity (700 MHz) imp. (BNL-SERL cavity R. Calaga's PhD thesis)



- We also did a "fit" with a broad-band resonator (Q=1, f=5 GHz, R=1.5 k $\Omega/m$ ),
- Impact of resistive-wall impedance ? (suggested by V. Danilov see also his talk)
  - → computed with ImpedanceWake2D analytical code [EPFL PhD thesis 5305], for an aluminum cylindrical beam pipe, 2 cm radius.

## TLEP transverse impedance contributions



→ Resistive-wall impedance is a significant contribution!

## TLEP TMCI at Q'=0 without damper

TMCI threshold (DELPHI with 3 radial modes, 7 azimuthal modes):

- → Resistive-wall impedance indeed the main contributor to TMCI (Note: here Q=640.9 most critical below integer).
- → We choose most pessimistic scenario for RF cavity (broad-band model), even if less realistic.
- → In the end, singlebunch threshold just below 1 mA.



## TLEP: stability analysis with resistive damper

DELPHI results for instability threshold: scan vs. Q' and damper rate (up to 0.1)

i.e. 10 turns)

→ As for LEP, resistive damper barely improves the situation.



## TLEP: stability analysis with reactive damper

DELPHI results for instability threshold: scan vs. Q' and damper rate (up to 0.1)

i.e. 10 turns)

→ Reactive damper is rather ineffective as well.



### Conclusions and future work

- Developped a new code (DELPHI) to study stability in mode-coupling conditions, with transverse damper. Benchmarks done (vs. MOSES, Karliner & Popov, HEADTAIL), many more to be done.
- Study LEP stability with damper & RF cavity impedance. Karliner & Popov result
  of large increase of threshold of instability with resistive damper at negative
  chromaticity not reproduced; not clear why.
- LEP experimental results (relative ineffectiveness of transverse flat damper being reactive or resistive) qualitatively obtained.
- TLEP impedance is likely not to be dominated by cavities but rather by resistivewall impedance, as far as TMCI is concerned.
- TLEP stability analysis with the DELPHI code shows essentially the same resut as LEP: a flat (bunch-by-bunch) damper should be ineffective, being either resistive or reactive (at least with damping time > 10 turns).
- Still very preliminary study! Many further checks have to be done.
- Future work concerning TLEP:
  - Check multibunch effects,
  - Refine impedance & damper models.