TLEP ... the very first steps

LEP3 and TLEP

Zimmermann, F (CERN, Geneva, Switzerland)

07 December 2012

	LEP3	TLEP
circumference	26.7 km	80 km
max beam energy	120 GeV	175 GeV
max no. of IPs	4	4
luminosity at 350 GeV c.m.	-	$0.7x10^{34}cm^{-2}s^{-1}$
luminosity at 240 GeV c.m.	10 ³⁴ cm ⁻² s ⁻¹	5x10 ³⁴ cm ⁻² s ⁻¹
luminosity at 160 GeV c.m.	5x10 ³⁴ cm ⁻² s ⁻¹	$2.5x10^{35}cm^{-2}s^{-1}$
luminosity at 90 GeV c.m.	2x10 ³⁵ cm ⁻² s ⁻¹	10 ³⁶ cm ⁻² s ⁻¹

TLEP

... the very first steps

COLLEGE DE LA CO	1					
	LEP2	LHeC	LEP3	TLEP-Z	TLEP-H	TLEP-t
beam energy Eb [GeV]	104.5	60	120	45.5	120	175
circumference [km]	26.7	26.7	26.7	80	80	80
beam current [mA]	4	100	7.2	1180	24.3	5.4
#bunches/beam	4	2808	4	2625	80	12
#e-/beam [10 ¹²]	2.3	56	4.0	2000	40.5	9.0
horizontal emittance [nm]	48	5	25	30.8	9.4	20
vertical emittance [nm]	0.25	2.5	0.10	0.15	0.05	0.1
bending radius [km]	3.1	2.6	2.6	9.0	9.0	9.0
partition number J _e	1.1	1.5	1.5	1.0	1.0	1.0
momentum comp. $\alpha_{c}[10^{-5}]$	18.5	8.1	8.1	9.0	1.0	1.0
SR power/beam [MW]	11	44	50	50	50	50
β* _x [m]	1.5	0.18	0.2	0.2	0.2	0.2
β* _v [cm]	5	10	0.1	0.1	0.1	0.1
σ* _x [μm]	270	30	71	78	43	63
σ* _v [μm]	3.5	16	0.32	0.39	0.22	0.32
hourglass F _{hg}	0.98	0.99	0.59	0.71	0.75	0.65
ΔE ^{SR} _{loss} /turn [GeV]	3.41	0.44	6.99	0.04	2.1	9.3
SuperKEKB:ε./ε.=0.25%						
346CIRERD.6,/6,-0.23/	U					

based on considerations & experience from LEP (W.Herr) / LEP3 (Y. Cai)

Arc: 96 standard FoDo cells & 2 half bend cells at beginning and end

length of arc: 2.8km

length of straight section: 0.45 km

Arc: the single FoDo cell

until now ... 2 dipoles / 2 quadrupoles to be optimised according to hardware engineering

short cell length: $\approx 30 \text{ m}$

advantage: small betas small dispersion small emittance

but: realistic hardware design?

Arc: the single FoDo cell

phase advance: $90^{\circ} / 60^{\circ}$

to be discussed ...

90° horizontally: small dispersion & emittance 60° vertically: small beam size (β_y)

and better orbit correction tolerance (LEP experience)

50. 45. 40.

35. 30. 25. 20.

5. \ 2000.

2018.

2036.

s(m)

2054.

2072.

2090.

Hardware:

2 dipoles per FoDo

$$l(B0) = 10.5 m$$

 $l(QF) = l(QD) = 1.5m$

 $B_0 \approx 0.074 \ T$ Complete Arc: $G \approx 85 \ T/m$ 4700 dipoles and quadrupoles

The straight sections:

6 matching quadrupoles, 8 "empty" FoDo cells, dispersion free 6 matching quadrupoles

The Ring: a kind of three times LEP

24 Arcs, 24 straight sections

?? one or two mini-beta-insertions ??

The Ring: a kind of three times LEP

Main Parameters:

```
\beta_x = 45m
\beta_y = 55m
L = 78996m
```



```
emit;
```

enter EMIT module

Global parameters for electrons, radiate = T:

C TO	78996.65702 m 263.5044842 mus	fO secs alfa
IV eta	2.719920464e-06	seus aira gamma(tr)
Bourrent	0.005472236431 A/	
Npart	9e+12 /bu	
gamma	342466.4839	beta
guess:	0	0
U0	10459.447070 [Ma	eV/turn]

The Ring: a kind of three times LEP

Main Parameters:

momentum compaction

MADX: $\alpha_{cp} = 2.7*10^{-6}$

To Name and Control & Address.

energy loss per turn:

MADX: $\alpha_{cp} = 10.4 \text{ GeV}$

The Ring: a kind of three times LEP

Main Parameters:

Damping & Beam Emittance

50000 60000

$$\epsilon = 3.4*10^{-10} \,\text{rad m}$$
 ... quite a bit smaller than required.

- -> optimise optics for higher ε
- -> install wigglers for ε control

Synchrotron Radiation Power

$$N_p = 9*10^{12}$$

$$\Delta U_0 = 10.4 MeV$$

$$T_0 = 263 \ \mu s$$

TLEP ... questions to be discussed

crab waist / mini beta / local Q' control ??

Restriction on the energy and luminosity of e^+e^- storage rings due to beamstrahlung

V. I. Telnov¹,*

¹Budker Institute of Nuclear Physics SB RAS, 630090, Novosibirsk, Russia Novosibirsk State University, 630090, Novosibirsk, Russia (Dated: 29 March 2012)

The role of beamstrahlung in high-energy e^+e^- storage-ring colliders (SRCs) is examined. Particle loss due to the emission of single energetic beamstrahlung photons is shown to impose a fundamental limit on SRC luminosities at energies $2E_0\gtrsim 140\,\mathrm{GeV}$ for head-on collisions and $2E_0\gtrsim 40\,\mathrm{GeV}$ for crab-waist collisions. With beamstrahlung taken into account, we explore the viability of SRCs in the $2E_0=240$ –500 GeV range, which is of interest in the precision study of the Higgs boson. At $2E_0=240\,\mathrm{GeV}$, SRCs are found to be marginally competitive with linear colliders; however, at $2E_0=400$ –500 GeV, the attainable SRC luminosity would be a factor 15–25 smaller than desired.

PACS numbers: 29.20

In conclusion, we have demonstrated that beamstrahlung suppresses the luminosities of high-energy e+e- storage rings as $1/E^{4/3}$ at beam energies $E > \sim 70 \text{GeV}$ for head-on collisions and $E > \sim 20 \text{GeV}$ for crab-waist collisions. Very importantly, beamstrahlung makes the luminosities attain-able in head-on and crab-waist collisions approximately equal above these threshold energies. At 2*E = 240~500 GeV, beamstrahlung lowers the luminosity of crab-waist rings by a factor of 15-40.

TLEP ... the next steps

mini beta / local Q' control ? / crab waist ??

* mini beta insertion: ... "LEP-like version" preferred

how many ... first guess: two no crab waist / no ILC like mini β

* optimisation of cell structure:

phase advance / hard ware

* damping wigglers: emittance control

* chromaticity compensation

- * layout interaction region / beam separation / synchrotron radiation at IR
- * cell structure modification for different energies