

2nd ANNUAL ARDENT WORKSHOP

Quality assessment of hadrontherapy fields with TEPCs

Paolo Colautti, INFN

2nd Annual ARDENT Workshop, Milano, 14-18 October 2013

The radiation quality concept

The radiation field quality is meant as a physical measurable quantity, which is significant for primary effects on a biological system

> We define the measured y-spectrum in 1-2 µm sites as the radiation-field microdosimetric quality

Some detectors measure only \overline{y}_D , which is used as quality mark of the radiation field.

The couple of values \overline{y}_D and \overline{y}_F is a better quality mark of the radiation field.

 RBE_{μ} , the microdosimetric assessment of RBE, can be an accurate quality mark for a given biological end-point.

Therapeutic beam constrains

Fluence rates

Proton continuos beam	$\frac{10^7 _{3} 10^8 \text{ particles}}{\text{ cm}^2 \times \text{s}}$
BNCT facility	$\gg \frac{10^9 neutrons}{cm^2 \times s}$
CNAO protons per spill	$\frac{10^8 _{3} 10^{10} \text{ particles}}{\text{cm}^2 \times \text{s}}$
CNAO carbon ions per spill	$\frac{10^6 _{3} 10^8 \text{ particles}}{\text{ cm}^2 \times \text{s}}$

1 cm TEPC ought to measure at counting rates bigger than 10^6 s⁻¹

1 mm TEPC will measure at counting rates bigger than 10⁴ s⁻¹

Energy calibration technique in $\Phi \sim 1 \text{cm}$ cylindrical TEPCs

Energy calibration technique in $\Phi \sim 1 \text{mm}$ cylindrical TEPCs

Measurements at the Nice therapeutic proton beam

Insulator surfaces damage without electric-field tubes

Solution: a cavity inside the insulator to switch off the the electronic avalanche

Mini TEPC of 2.7 mm of external diameter

8 FRENCH CANNULA

Vacuum and gas flow apparatus

Electronic chain

Electronic chain

Before measuring: linearity checks

Initial data from the 3 MCA

Volt calibration

Logaritmic compaction

Sub-spectra junction

Sub-spectra junction is not feasible if they do not superimpose

The pulse-height frequency distribution

$$d(\log y) = \frac{dy}{y} \times \log e$$

The pulse-height weighted distribution

Lineal energy calibration

Maximum $\triangle E$ -lost calculation in CSDA

Lineal-energy dose distribution

Blue points are used to linearly extrapolate the frequency yvalues down to 0.01 keV/µm Fractional part of the visual area is the fractional contribution to the the absorbed dose by the corresponding y-events

The weight is **1** for y-values < 10 keV/µm The weight is < **1** for y-values ≈> 200 keV/µm Fractional part of the visual area is the fractional contribution to the effective-dose of corresponding yevents

Splitting the dose spectrum in its neutron and gamma components

Quality of the conjunctive-melanoma proton-therapeutic beam

The therapeutic beam quality

The twin TEPC for BNCT

BNCT dose components twin TEPC measurements

• Glenn F.Knoll. *Radiation Detection and Measurements*. John Wiley & Sons, NY, 1979

• ICRU Report 36. *Microdosimetry*. 1983

