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SILICON MICRODOSIMETRY 

[1] J. F. Dicello, H. I. Amols, M. Zaider, and G. Tripard, A Comparison of Microdosimetric 
Measurements with Spherical Proportional Counters and Solid-state Detectors, Radiation 
Research 82 (1980) 441-453. 

[2] M. Orlic, V. Lazarevic, and F. Boreli, Microdosimetric Counters Based on Semiconductors Detectors, 
Radiat. Prot. Dosim. 29 (1989) 21-22. 

[3] A. Kadachi, A. Waheed, and M. Obeid, Perfomance of PIN photodiode in microdosimetry, Health 
Physics 66 (1994) 577-580. 

[4] A. Kadachi, A. Waheed, M. Al-Eshaikh, and M. Obeid, Use of photodiode in microdosimetry and 
evaluation of effective quality factor, Nuc. Instrum. Meth. A404 (1998) 400-406. 

PN diodes 

The differences from the lineal energy spectra measured with the TEPC (Tissue 
Equivalent Proportional Counter) were mainly ascribed to the shape and the 

dimensions of sensitive volumes 

Complex charge collection process 
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INTRODUCTION (I) 

• The micrometric sensitive volumes which can be achieved with silicon 
detectors led these devices to be studied as microdosimeters.  

 coupled to TE converters, microdosimetry of neutron fields; 

 bare (no converter): they can be used for measuring the quality of 
radiation therapy beams and SEE assessment. 
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INTRODUCTION (II) 

• Advantages:  

 wall-effects avoided; 

 compactness;  

 cheapness; 

 transportability;  

 low sensitivity to vibrations; 

 low power consumption. 
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INTRODUCTION (III) 

• Problems: 

 the sensitive volume has to be confined in a region 
of well-known dimensions (field-funnelling effect); 

 corrections for tissue-equivalency (energy 
dependent); 

 correction for shape equivalency of the track 
distribution (for TEPC comparison); 

 angular response; 

 the electric noise limits the minimum detectable 
energy (high capacitance);  

 the efficiency of a single detector of micrometric 
dimensions is very poor (array of detectors); 

 radiation hardness. 
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THE FIELD-FUNNELING EFFECT 

• FFE: a local distortion of the electric 
field in the sensitive zone, induced by 
high-LET particles, which leads to 
charge collection outside the depleted 
region. 

• Example: p-n diode coupled to a 
polyethylene converter, irradiated 
with monoenergetic neutrons: 
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THE FIELD-FUNNELING EFFECT: SOLUTIONS 

• Array of diodes fabricated using the silicon on insulator 
(SOI) technology (Rosenfeld et al.).  

 This technique allows to obtain sensitive volumes 
of well defined dimensions, independent of the 
field funnelling effect; 

 Different structures with a sensitive volume 2, 5 
and 10 μm in thickness were fabricated.  

 The absorbed dose distributions from different 
neutron fields were compared to simulations 
performed with the GEANT code and 
measurements with a standard TEPC, resulting in a 
satisfactory agreement.  
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THE FIELD-FUNNELING EFFECT: SOLUTIONS 

• Monolithic silicon telescope (ST-Microelectronics, Catania, 
Italy):  
 the p+ cathode acts as a “watershed” for  charge 

collection, thus minimizing the FFE. 

E  thickness: ~1.9 m 
E  thickness: ~ 500 m  

Sensitive area: 1 mm2 
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EFFECTS ON SILICON AND DOPANTS 

• Contributions of nuclear reactions induced on a p-i-n 
diode by thermal and fast neutrons were measured in 
the past. 

 secondary particles from neutron reactions on 
10B were observed (rate 2.210-6 s-1per unit 
fluence rate of thermal neutrons vs. 10-5 s-1 
recoil-protons); 

 secondary particles generated by fast neutrons 
on silicon were also observed. 

→ 28Si(n,p)28Al (Eth 4.0 MeV); 

→ 28Si(n,)25Mg (Eth 2.75 
MeV). 

 
 

 Further investigation is necessary for new 
devices.  

 

 Only 11B was implanted in the silicon telescope: 

→ During irradiation on the thermal 
column of the TAPIRO reactor, no 
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Si MESA MICRODOSIMETERS 

• 3D silicon mesa p-n junction array with internal charge 
amplification produced at UNSW SNF. 

All figures in this slide 
Courtesy of A. Rosenfeld, Wollongong University, Australia  
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SEGMENTED SILICON TELESCOPE 

• In the following the main problems related to a silicon 
microdosimeter will be discussed mainly referring to 
the: 

• segmented silicon telescope: 

 constituted by a matrix of cylindrical ∆E 
elements (about 2 µm in thickness) and a single 
residual-energy E stage (500 µm in thickness); 

 the nominal diameter of the ∆E elements is 
about 9 μm and the width of the pitch 
separating the elements is about 41 µm. 

 more than 7000 pixels are connected in parallel 
to give an effective sensitive area of about 0.5 
mm2.  

 minimum detectable energy is limited to about 
20 keV by the electronic noise.  

 the ∆E stage acts as a microdosimeter and the E 
stage plays a fundamental role for assessing the 
full energy of the recoil-protons, thus allowing to 
perform a LET-dependent correction for tissue-
equivalency.  
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SEGMENTED TELESCOPE: SEM IMAGES 
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SEGMENTED SILICON TELESCOPE: SCATTER-PLOT 

• 2.7 MeV neutron irradiation of the telescope coupled to A-150 plastic; 

• The signals from the E and the E stage were acquired with a 2-channel ADC in 
coincidence mode. 
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SEGMENTED SILICON TELESCOPE: SIMULATION 

• The response of a cylindrical element of the ∆E stage was simulated with a MC algorithm; 

• The algorithm takes into account the geometrical structure of the telescope, but does not reproduce border 
effects.  

• Secondary electrons from photon interactions on the materials surrounding the detector were not accounted 
for. 
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TISSUE-EQUIVALENCE AND GEOMETRIC CORRECTIONS 

• In order to derive microdosimetric spectra similar to 
those acquired by a TEPC, corrections are necessary; 

• Tissue equivalence: 

 a LET-dependent tissue equivalence correction 
can be assessed through a telescope detector: 

→ by measuring event-by-event the 
energy of the impinging particles; 

→ by discriminating the impinging 
particles. 

• Shape equivalence: 

 basing on parametric criteria from the literature, 
the lineal energy y was calculated by considering 
an equivalent mean cord length. 
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TISSUE-EQUIVALENCE CORRECTION 

Analytical procedure for tissue-equivalence correction: 

Energy deposited along a track of length l by 
recoil-protons of energy Ep in a tissue-equivalent 
E detector 
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the thickness of the E stage limits the TE correction to recoil-protons below 8 
MeV  (alphas below 32 MeV) 

TISSUE-EQUIVALENCE CORRECTION 

The scaling factor    
  
depends on the energy and type 
of the impinging particle 
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SHAPE ANALYSIS 

• The correcting procedure can be based on cord 
length distributions, since ∆E pixels are cylinders 
of micrometric size in all dimensions (as the 
TEPCs).; 

 This correction is only geometry-dependent 
(no energy limit). 
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COMPARISON WITH A CYLINDRICAL TEPC 

• The microdosimetric spectra were compared to 
the one acquired with a cylindrical TEPC at the 
same positions inside a PMMA phantom.  

 L. De Nardo, D. Moro, P. Colautti, 
V. Conte, G. Tornielli and G. 
Cuttone, RPD 110 (2004) 

• Proximal part and across the SOBP:  
• Corrections: 

• Protons cross both the E and the E stage. 

1) Tissue- equivalence: 

 a scaling factor was applied: 
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DISTAL PART OF SOBP 

• Distal part of the SOBP: most of protons stop in the E 
stage 

• An energy dependent correction for TE can be applied 
from the event-by-event information from the two 
stages: 
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DISTAL PART OF SOBP 
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ENERGY THRESHOLD IMPROVEMENT 

The main limitation of the system is the high energy threshold 
imposed by the electronic noise.  

A feasibility study with a low-noise set-up based on discrete 
components was carried out in order to test this possibility 

New design of the segmented telescope with a ∆E stage with a lower 
number of cylinders connected in parallel and an E stage with an 
optimized sensitive area 

1. Decrease the energy threshold below 1 keV μm-1 
2. Optimize the counting rate of the two stages 
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ENERGY THRESHOLD IMPROVEMENT 

A telescope constituted by a single ΔE cylinder coupled to an E stage was irradiated  with β 
particles emitted by a 137Cs source. 
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CONCLUSIONS 

• Silicon detectors show interesting features for microdosimetry, anyway still 
 some problems have to be solved: 

 electronic noise (minimum detectable lineal energy); 
 radiation hardness when exposed to high-intensity hadron beams. 
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Additional Slides 
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SHAPE ANALYSIS 

The equivalence of shapes is based on the parametric criteria given in the literature (Kellerer). 
 

By assuming a constant linear energy transfer L:    
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IRRADIATIONS AT THE CATANA FACILITY 

• The segmented silicon telescope was irradiated inside a PMMA phantom exposed to the 62 MeV proton beam at the 
INFN-LNS CATANA facility.  
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SCATTER-PLOTS 

0 2 4 6 8 10 12 14 16 18 20 22 24
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

D
e

p
th

 d
o

s
e

 c
u

rv
e

 (
a

.u
.)

depth in PMMA (mm)

0 1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

120

140

160

180

200

220

Counts per unit doseDepth = 8 mm

Dose = 0.3 Gy

E
n

e
rg

y
 d

e
p

o
s
it

e
d

 i
n

 t
h

e
 

E
 s

ta
g

e
 (

k
e
V

)

Energy deposited in the E stage (MeV)

0
1.2
2.4
3.6
4.8
6.0
7.2
8.4
9.6
11
12

0 1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

120

140

160

180

200

220

Counts per unit doseDepth = 15.5 mm

Dose = 0.44 Gy

E
n

e
rg

y
 d

e
p

o
s
it

e
d

 i
n

 t
h

e
 

E
 s

ta
g

e
 (

k
e
V

)

Energy deposited in the E stage (MeV)

0
1.2
2.4
3.6
4.8
6.0
7.2
8.4
9.6
11
12

0 1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

120

140

160

180

200

220

Counts per unit doseDepth = 18 mm

Dose = 0.43 Gy

E
n

e
rg

y
 d

e
p

o
s
it

e
d

 i
n

 t
h

e
 

E
 s

ta
g

e
 (

k
e
V

)

Energy deposited in the E stage (MeV)

0
1.2
2.4
3.6
4.8
6.0
7.2
8.4
9.6
11
12

0 1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

120

140

160

180

200

220

Counts per unit doseDepth = 21 mm

Dose = 0.46 Gy

E
n

e
rg

y
 d

e
p

o
s

it
e

d
 i

n
 t

h
e
 

E
 s

ta
g

e
 (

k
e
V

)

Energy deposited in the E stage (MeV)

0
0.70
1.4
2.1
2.8
3.5
4.2
4.9
5.6
6.3
7.0

0 1 2 3 4 5 6 7 8 9
0

20

40

60

80

100

120

140

160

180

200

220

Counts per unit doseDepth = 21.5 mm

Dose = 0.62 Gy

E
n

e
rg

y
 d

e
p

o
s

it
e

d
 i

n
 t

h
e
 

E
 s

ta
g

e
 (

k
e
V

)

Energy deposited in the E stage (MeV)

0
0.70
1.4
2.1
2.8
3.5
4.2
4.9
5.6
6.3
7.0



30 

PROXIMAL AND ACROSS THE SOBP 
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DISTAL PART OF THE SOBP 
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