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Fundamentals of Gas-Filled Detectors

* One of the oldest and most widely used radiation
detector types

* Gas-filled detectors respond to the direct ionization
created by charged particles set in motion by the
interaction of the radiation field with the chamber gas

— lon Chambers
— Proportional Counters
— Geiger-Mueller Counters



Fundamentals - lonization in Gases

To create an ion pair, a minimum energy equal to the ionization
energy of the gas molecule must be transferred

lonization energy between 10 to 25 eV for least tightly bound
electron shells for gases of interest in radiation detection

 Competing mechanisms such as excitation leads to

incident particle energy loss without the creation of ion
pair

W-value: average energy lost by incident particle per ion pair formed

Typical W-values are in the range of 25 — 35 eV/ion pair




Fundamentals - Basic Components

Electrodes 4

Common Fill Gases: Ar, He, H,, N,, Air, O,, CH, TE



http://www.wiley.com/college/knoll/0470131489/ig/ch05/pages/c05f004_highres.htm

Fundamentals — What is Measured?

D - D . 5 matter
matter — Ycavity: 0 cavity

The charge generated in a gas-filled detector depends on:
* The gas used

* The material surrounding the gas
 The characteristics of the radiation field



lonization Chambers in Experimental
Microdosimetry

lonization chambers have played an important niche role in experimental
microdosimetry particularly for situations where nanometric site-sizes have been of
interest or where high dose-rates have excluded the pulse-height measurement
technique

e Variance Methods  Recombination Chambers
— Single chamber (variance) — High pressure ionization chambers
— Twin chambers (variance —
covariance) Based on the difference of ionization
Based on the repeated measurement of current measured at two different
charged collected in a given time interval collection voltages and the degree of
and the relationship between the dose columnar recombination in individual
mean specific energy for single events, the particle tracks.
relative variance for multiple events and
the mean SpECiﬁC energy per t|me interval Makrigiorgos and Waker: Phys. Med. Biol. 31, No 5, 543-554 (1986)

Golnik: Radiat. Prot. Dosim. No 1-4, 211-214 (1997)

Zp=V(2).Z

Kellerer and Rossi: RADIATION RESEARCH 97, 237-245 (1984)

Lillhok, Grindborg, Lindborg et. al. Phys. Med. Biol. 52, 4953-4966,
(2007)



Proportional Counters in Experimental
Microdosimetry

— Operating Principle
— Tissue Equivalent (TEPC)

— Other Counter Types

 Multi-element
 Wall-Less
* Heterogeneous

Saad Al Bayati; MASc. Thesis, UOIT, 2012




Proportional Counters — Operating Principle

A proportional counter is a gas-
ionization device consisting of a
cathode, thin anode wire and fill-
gas.

Charge produced by ionization in
the fill gas is multiplied providing
an amplified signal proportional
to the original ionization.

Multiplication (gas-gain) depends
on the fill-gas, applied voltage and
detector geometry

With sufficient gas-gain the
energy deposited by individual
charged particle tracks can be
recorded as a pulse-height single-
event spectrum
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Proportional Counters — Tissue Equivalent Walls

E matter
cavit
P y

Dimatter = Dcavity-

For tissue equivalent walls and gas (homogeneous
counters) the stopping power ratio is unity and
absorbed dose in wall is given by the absorbed dose
to the gas cavity

A150 TE-plastic atomic composition by % weight

__H_ c | N _ | 0

muscle muscle muscle muscle
(10.2) (12.3) (3.5) (72.9)

10.1 77.6 3.5 5.2



Proportional Counters — Tissue Equivalent Gases

* Methane based

CH, (64.4% partial pressure)
CO, (32.4% partial pressure)
N, (3.2% partial pressure)

By %weight: H (10.2); C (45.6); N (3.5); O
(40.7)

* Propane based
* C;Hg (55% partial pressure)
* CO, (39.6% partial pressure)
* N, (5.4% partial pressure)

* By %weight: H (10.3); C(56.9); N (3.5); O
(29.3)

__H_ | c N __
10.2

ICRU Tissue (Muscle) atomic 12.3 3.5 72.9

composition by % weight



Proportional Counters — Microscopic Site-Size
Simulation
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Proportional Counters — TEPC Applications

 TEPC - Measurable Quantities
— Absorbed dose
— Mean Quality factor
— Dose equivalent
— Microdosimetric averages

* TEPC- LET Spectrometry
— Radiation Field Analysis
— Charge Particle Identification

PC

* TEPC - Differential Dosimetry
— Measurement of Kerma Factors
— Boron Neutron Capture Dose

Figure 1. The principles of operation and measurement
with TEPCs



TEPC Measureable Quantities —
Absorbed Dose
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TEPC Measureable Quantities —
Absorbed Dose

The absorbed dose to the counter gas cavity is derived from the
measured yd(y) event-size spectrum:

D= energy deposited []]

mass of gas [kg]

_ Ziyid)lkeV/um] x L [keV /um]

D
PgxV

1.602 E — 16 [J /keV]



Measureable Quantities — Quality Factors
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Measureable Quantities — Dose Equivalent

H=D.(Q
S

Determined from the
shape of the event-
size spectrum and

assuming Q(y) = Q(L)

Dose to the gas
cavity calculated
directly from the
measured event-
Size spectrum



Measureable Quantities — Dose Equivalent
Response

For neutron s the measured quantity, dose-
equivalent to the gas-cavity is often compared to
the operational quantity Ambient Dose Equivalent
H*(10). The dose equivalent response of the
TEPC, defined as H/H*(10), is a function of
neutron energy and is found to be close to unity
for neutron fields greater than 1 MeV and for
thermal neutrons, but significantly less than 1.0
for neutrons of afew hundred keV and below.



Measureable Quantities — Dose Equivalent

Response
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Figure 3. Monoenergetic response of a 5" TEPC. Response is
defined as the fraction of the ambient dose equivalent that is

measured by the instrument. Line, analytical fit; symbols,
experimental data from Reference &,

Nunes and Waker, Radiat. Prot. Dosim. 59, No 4, 279-284, 1995



Measureable Quantities — Microdosimetric
Averages

Microdosimetric averages such as the frequency
mean and dose mean lineal energy are
important measures of radiation quality for
characterising radiation fields and therapy
beams in terms of their potential biological
effect. These quantities are directly derivable
from measured event-size spectra using TEPCs



Measureable Quantities — Microdosimetric Averages
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TEPC — LET Spectrometry

Recognizable
features of an
event-size
spectrum
enable us to
identify and
analyse
radiation fields
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LET Spectrometry— Radiation Field

Analysis
The position of i
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Saad Al Bayati; MASc. Thesis, UOIT, 2012



LET Spectrometry — Radiation Field
Analysis
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LET Spectrometry — Charged Particle

Mixed field
neutron -
gamma
dosimetry can
be carried out
by the
identification
of ‘low LET’
electrons and
‘high LET’
protons

ldentification
0.6
e w Pure Am-241
0.5 f =w = Pure Am After Scaling
| \ Extended Am-Be
04
/ ll
= 0.3 /
> J"‘F ¥ ol
0.2 = Ciadr
/ : "‘ \
01 v.an n‘
#
0 | V¥ e | |
0.1 1 Lihedl Bfergy (keV/pm) 100 1000

Saad Al Bayati; MASc. Thesis, UOIT, 2012




Differential Dosimetry - Kerma Factors

2.“ T 'llllll' T nn'rul T T TT I — ,,..,“.r

Differences
between
microdosimetric
spectra obtained
with counters with
wall-materials
different in one
element can
provide information
on the kerma per

unit fluence for that Y (MeV.cmv.g L)
element Figure 2. Measured dose distribution plotted against event
size for ZrO and Zr walled counters bombarded by 17.5
MeV neutrons.

Deluca et al. Radiat. Prot. Dosim. 23 Nos 1-4, 27-30, 1988



Differential Dosimetry - BNCT
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Waker , Burmeister et al, Radiat. Prot. Dosim., 99, No 1-4, 311-316, 2002



Other Counter Types — Multi-Element

To increase the sensitivity of a TEPC we need to increase the
surface area of the wall either by:

* Increasing the diameter of the counter
* Constructing a multi-element device




Other Counter Types — Multi-Element
Counters
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Figure 8. Comparison of the sensitivity of the METEPC
as a function of mean neutron energy with that of a 5 and
2" diameter spherical TEPC.

Waker, Aslam and Lori; Radiat. Prot. Dosim, 2010



Other Counter Types — Multi-Element

Using
coincidence
techniques to
distinguish
between
energetic
charged
particles and
neutrons in
high energy
ion beams or
Space
radiation
environment

Guard detector
sensitive volumes

Central detector
sensitive volumes
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Other Counter Types— Wall-Less

Measurement of
dose mean
specific energy
avoiding the
distortions
introduced by
‘wall-effects’
due to the
difference in
density between
the solid TE wall
and the TE gas
cavity
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FiG. 8. A spherical grid-walled counter. The spherical ionization chamber is gas coupled
to a cylindrical proportional counter (after Gross et al., 1970).
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FIG. 9. Spherical grid-wall counter using a series of wall potentials (after Braby, 1971).

Topics in Radiation Dosimetry — Supplement 1. F. Attix, Academic Press, 1972



Other Counter Types— Wall-Less

5002 S Tsuda et al
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Figure 2. Photographs of the wall-less tissue-equivalent proportional counter (unit: mm). The
overview (a) and the detection part (b) are shown. The details of the detection part are illustrated
in (c).

Tsuda et. al. Phys. Med. Biol., 55, 5089-5101, 2010



Other Counter Types — Heterogeneous

Graphite counter used in mixed field dosimetry
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Future Needs and Challenges

* Size and sensitivity
e Calibration

* Sighal Processing
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