

Silicon Microdosimetry

Anatoly Rosenfeld Centre for Medical Radiation Physics University of Wollongong

14 October, 2013

Lecture Outline

1.Introduction to Solid State microdosimetry

2.Electronic , calibration and sensitivity of Si microdosimeter

2.1. Comparison of TEPC to Si-microdosimeter

3.Concept and design of Silicon on Insulator (SOI) microdosimeters

3.1. Three generation of SOI microdosimeters

3.2. Charge collection in Sensitive Volumes (SV) of SOI microdosimeters

4. Application of SOI microdosimeters

4.1.Radiation protection (Cf-252 and Pu-Be Sources)

4.2.Hadron Therapy

4.2.1.Fast Neutron Therapy (FNT)

4.2.2. Proton Therapy (PT)

4.2.3. Heavy Ion Therapy. (HIT)

4.2.4. LEM vs MKM –SOI microdosimetry experience

5.3D detector technology-future of Si microdosimetry.

5.1. Pecularities of charge collection in 3D Si detectors

5.2.Concept and design of 3D Si microdosimeter.

5.3.GEANT 4 modeling of 3D microdosimeter (avionics environment, isotopic neutron sources)

6.Other Si microdosimetric structures (DRAM , FGMOSFET etc)

7. Conclusion and tips for thinking on new Si microdosimeters design

Microdosimetry and Dose Equivalent

- Microdosimetry
 - Assumes the weighting factor is related to the energy deposited in the cell nucleus: ϵ
 - Measure this for each particle that crosses detector
 - Formulate dose distribution: d(ε)
 - Integrate with weighting factor to give **Dose Equivalent** : $H = \int Q(\varepsilon) d(\varepsilon) d\varepsilon$
 - Dose Equivalent can be used to predict biological effect of radiation
- We require detectors with dimensions commensurate with cell nuclei

Microdosimetry and Fluence approach for stochastic events

Microdosimetry

Measure distribution of ionisation events in microscopic volume Derive quality factor and equivalent dose estimate

$$H = \int Q(y)d(y)dy$$

Fluence based approach

Measure types and energy distribution of all particles Integrate product of risk cross section a fluence over energy. Sum over all particles to directly obtain risk estimate

$$R = \sum_{i} \int_{r} \sigma_{i}(E) \phi_{i}(E) dE$$

Q(y), Q(L) and $\sigma(E)$ were modified recently , ICRU 92 and NCRP 137 Quality coefficient for low doses neutrons is still uncertain

All above characteristics are relevant to Radiation Protection only

Study of dose deposition in microscopic volumes e.g. Human cells

- Stochastic deposition of energy not correlated with absorbed dose
- Important for radiation protection in radiotherapy and space radiation environments

Microdosimeter measures energy deposition events in small (cell-sized) volumes

- Lineal energy, y = E/ <l> where <l> is mean chord length
- Most common representation in yd(y) vs. y. yd(y) indicates the dose delivered in the range y to y+dy

Photons

HCP

Absorbed dose vs. RBE

Cell

Ionisation

New Approach: Silicon Microdosimetry

10x10x2 μm cells

9

CENTRE FOR

MEDICAL

RADIATION PHYSICS

Silicon Microdosimetry at CMRP

1st Generation

- Fabricated on bonded silicon-on-insulator (SOI) wafer
- As and B ions diffused to create p-i-n junctions
- Elongated Rectangular Parallelepiped Structure
- Array of 4800 cells
- Disadvantage: cross-talk between neighboring cells

2nd Generation: MESA

- Fabricated on p-type SOI wafer
- Phosphorus and boron diffused to produce p-i-n diodes
- Array of 900 cylindrical cells
- Array of 3D raised mesa structures to reduce lateral diffusion and cross talk
- Cylindrical sensitive volume is a better approximation of spherical site
- Disadvantage: low yield due to difficulty evaporating Al track on raised mesa structure

2nd Generation: PLANAR

- Fabricated on p-type SOI wafer
- Phosphorus and boron diffused to produce p-i-n diodes
- Planar topology incorporating guard ring structure
- Array of 3600 cells

Comparison of proportional counter to silicon microdosimete

Category	Parameter	Proportional Counter	Silicon microdosimeter
Detector performance	Energy Resolution (Note ii)	Moderate	Moderate,
	Low energy sensitivity (Note iii)	Excellent, Single Ionizations, Minimum y = 0.05 keV/µm	Moderate, Minimum y = 0.4 keV/µm
	Sensitive volume definition	Good	Moderate
	Tissue Equivalence	Good	Moderate
	Radiation Hardness	Excellent	Moderate
	Spatial Resolution	Poor, 2.5 cm. 0.5 mm best case [20]	Excellent, 1 μm.
	Wall effect Immunity	Poor	Excellent
	Model cell array	No	Yes
	Shape design flexibility	Moderate	Moderate
Ease of Use	Calibration	Simple	Simple
	Cost	High	Low
	Portability	Moderate	Excellent
	System Complexity	Poor: Requires HV supply and gas supply.	Good: only requires low voltage supply.
	In-vivo use	No	Yes
	Integration	Poor	Excellent

The shaded areas identify the best performance of the two devices for each parameter. SOI microdosimeter is potentially better than TEPC energy resolution (lower W=3.62 eVc.f. 30 eV, better Fano factor and no gas multiplication but needs low preamplifier noise. 11 µm³ cubic silicon microdosimeter with ultra low preamplifier noise ~15 erms can better perform that 2.5cm TEPCsimulated diameter d = $1\mu m$

P.Bradley, A.Rosenfeld, M.Zaider, NIM,

Table 3.

Comparison of minimum detectable energy and resolution between TEPC and silicon microdosimeter

Parameter	Symbol	TEPC	Silicon Microdosimeter
Minimum	E_{min}	<i>eW</i>	$E_{m} \approx 5e_{m}W$
Detectable Energy		$E_m \approx 5 \frac{ms}{g}$	m rms
Theoretical Resolution	R_{th} (%)	$2.35 \frac{W}{F+m} 100$	$2.35 \frac{W}{F100}$
Resolution		100 V T	γT
Instrumentation	R_{inst} (%)	$\left(We_{-}\right)^2$ -2	$2.35 \frac{W}{R} = 100$
Resolution		$2.35\sqrt{\left(\frac{\pi}{T}\frac{-\gamma_{ms}}{g}\right)} + R_{rest}^2 100$	T T
Total Resolution	$R_T(\%)$	$W_{\rm FR} = 1 \left(W_{\rm FR} \right)^2 = r^2$	$W (W)^2$
		$2.35\sqrt{T}[F+m] + \left(\frac{T}{T}\frac{ms}{g}\right) + R_{rest}^{*} 100$	$2.35\sqrt{\frac{\pi}{T}}F + \left(\frac{\pi}{T}e_{rms}\right) 100$

Note: W = mean energy per ion pair = 30 eV (TEPC), 3.62 eV (Si)

g = gas gain

 e_{rms} = system electronic noise (rms electrons) referred to the preamplifier input *F* = Fano factor ~ 0.3 (TEPC), ~ 0.1 (Si)

T = energy absorbed

R_{rest} = non-preamplifier instrument resolution

Design of 2nd Generation Microdosimeter

Design Features

- Isolated SV with well defined CC boundary
 - 100% CCE
 - Gaussian peak for monoenergetic ions
- 3D Cylindrical SV
 - better approx. ideal sphere
 - ~ uniform response to isotropic field
- Radial E- Field
 - amplification = increased dynamic range
- Alternating odd / even array design
 - track structure measurement

MEDICAL RADIATION PHYSICS

Fabrication Steps

Experimental Results

TMAH Etching

Diffusion Time: 75 mins

15

Detector or ... ?

Has fabrication the fabrication process produced a microdosimeter?

IBICC has the answers....

Single Detector Designs

2 micron thick SOI devices

SOI planar silicon microdosimeter:generation 3/2

ARDENT Defined Annulus N+ Guard Ring:generation 3/2

- 3 MeV He²⁺ ion beam
- Beam spot size $\approx 1 \, \mu m$
- Beam raster scanned across device
- Deposited energy, ΔE , measured in coincidence with beam position, x and y
- Resolution makes microprobe ideal for studying microdosimeter features

Tested 2nd Generation Microdosimeters

I INIVERSITY OF

RADIATION

21

- 3 MeV He⁺ ions;
$$\frac{dE_{(Si)}}{dx}$$
 = 196.2 keV·µm⁻¹

- Scan of 2 μ m device; single cell readout

- Device 1.6 um thick

A.L.Ziebell et al. IEEE Trans on Nucl Sci., NS- 55, 3414 – 3420, Dec 2008

14 October, 2013

Median energy map

- Isolated SV as per design

RADIATION PHYSICS

LET Response

• 3 MeV He:
$$\frac{dE_{(Si)}}{dx} = 196 \text{ keV } \mu \text{m}^{-1}$$

• 5.5 MeV He:
$$\frac{dE_{(Si)}}{dx} = 135$$
 keV μ m⁻¹
Deposited Energy in 1.6 μ m

1 6 µm x (196 -135) ke\/ µm⁻¹ = 96 ke\/l

3 MeV He Deposited Energy vs...

5.5 MeV He MeV Deposited Energy

- Scan of 10 µm device; single cell readout

Spectrum of energy deposition events

- All events occur within the defined SV
- Spurious events observed outside SV result

of beam scatter

Event frequency map

Event frequency distribution (x.y) for selected energy regions of interest

Low energy deposition events

 Attributed to charge recombination within p⁺ and n⁺ regions

25

Event frequency distribution (x.y) for selected energy regions of interest

Peak energy deposition events

- Full energy collection associated with drift of charge under applied E-field.

26

14 October, 2013

ARDENT IBICC for 10 μm device (single cell)

Event frequency distribution (x.y) for selected energy regions of interest

High energy deposition events

- Enhanced CC correlates with Al contact
- Attenuation by overlaying Al contact increases $\frac{dE_{(Si)}}{dx}$
- Thicker Si under Al contact?

MEDICAL RADIATION PHYSICS

3D SOI silicon microdosimetry: generation 2/1

3D silicon mesa p-n junction array with internal charge amplification produced at UNSW SNF

Array Device Signal Readout

 Separate odd / even array readout could allow track structure information to be measured Odd and Even cell readout

Measurement Conditions

- 3 MeV He⁺ ions;
- Beam scanning area (230µm x 230µm)
- Only even array connected to preamplifier

5MeV alpha particle IBIC

- •Excellent charge collection efficiency in SV
- •Excellent separation between even and odd array
- •Low energy event from ions strike in a passive region

Median energy map

ARDENT SOI silicon microdosimetry:generation 3/2

CMRP PhD students Amy Ziebell and Nai Shian Lai

Response of new 3D SOI microdosimeter on 1 µm diameter 3 MeV alpha particles scanning microbeam

Each cell has sensitive volume with a radius of 6 μm and pitch about 20 μm

via Dopant Diffusion

Note: – All Dimensions in Microns

A. Cross-sectional Schemetic of the Microdosimeter

- MMD 2008 - N.S. Lai et al IEEE Trans on Nucl. Sci. ,NS-56 , 1637-1641, 2009

14 October, 2013

via Dopant Diffusion

via Ion Implantaion

Note: - All Dimensions in Microns

A. Cross-sectional Schemetic of the Microdosimeter

14 October, 2013

2nd Generation vs 3rd Generation

Mesa Structure via dopant diffusion \rightarrow Planar Structure via ion implant

No Avalanche Signal Multiplication ightarrow Possible Avalanche Signal Multiplication

 \rightarrow

Design of SV - 2um Thick SOI

ARDEN

via Ion Implantation

TCAD Modeling: Voltage & Electric Field

TCAD Modeling: Charge Transient

Energy of He ion = 1 MeV

Bias Voltage = -10 V

ARDENT

TCAD Modeling

14 October, 2013

Results

Energy deposition spectra resulting from a 50 MeV proton beam at 2.1 cm depth in the water phantom. (Bragg peak)

Statistical analysis by means
 of Kolmogorov-Smirnov test

	Water microdosimeter site	Left branch <i>p</i> -value	Right branch <i>p</i> -value
Position I	$L = 17 \ \mu m$	0.8730	0.9955
Position II	$L = 17 \ \mu m$	0.9897	0.8384
Position III	$L = 17 \ \mu m$	0.6172	0.9996
Position IV	$L = 17 \ \mu m$	0.8580	1.0000

- Linear coefficient C* = (0.56 ± 0.03) was determined to convert microdosimetric spectra from silicon to water for incident proton energies between a few MeV and 250 MeV.
- For a water cylinder with height h and diameter d, the required scaling is C*h, C*d of silicon.

MEDICAL RADIATION PHYSICS

Conversion Si to Tissue

- Comprehensive MC simulations were carried out for alpha, Li ions, N ions and protons for cylindrical and RPP SV
- Comparison between equivalent energy deposition spectra Si/W SVs and ratio of stopping powers Si/Water allow introduce average scaling coefficient 0.63 for RPP and 0.60 for cylinder for most applications

P.Bradley et al. *Med.Phys.*, 25(11), 2220-2225,1998 S.Guatelli et al., *IEEE Trans. On Nucl.Sci.*, Dec , 2008

Experimental Setup

Microdosimeter Probe

 Dose is determined from the f(E)/E Spectra in the following method:

RADIATION PHYSICS

UNIVERSITY OF

• The lineal Energy Spectra is determined by dividing the energy

by the mean chord length <l>:

$$< l >= \frac{4V}{S\zeta}$$

 $y = \frac{E}{}$

 Where <I> in this case is 19.05μm and ζ=0.63 is the TE conversion factor

• A normalised dose weighted lineal energy spectra can be obtained using the following relationship:

46

LONGONG

RADIATION PHYSICS

• The final step in determining dose equivalent (Sv) is to convolve

the dy spectra with a quality spectra Q(y).

SOI Microdosimetry for Personal Radiation Protection: n-γ Sources and Fluence

- ²⁵²Cf source mounted in a lead container, ANSTO
- Source activity at time of irradiation = 4.49x10⁶n/s in 4π
- Distance of microdosimeter from source = 130mm
- Total neutron flux on microdosimeter array = 25n/s for array A1(about 1.5 mm2)
- Total neutron fluence ~4.25x10⁶ incident on array A1

SOI Microdosimetry in Personal Radiation Protection

SOI Microdosimetry of ²⁵²Cf and PuBe neutron sources, ANSTO Neutron spectra from IAEA TRS 403

M.Reinhard et al, IEEE Trans NSS track record, 2008

Results: Zero Crossing Time Maps

I.Cornelius et al. IEEE Trans. Nucl. Sci , 49,N6, 2805-2809, 2002

Results: Zero Crossing Time Maps

Results: Zero Crossing Time Maps

Improvement of Sensitive Volume and Spectral Response with PSD technique

- Ion strikes outside the n⁺ region are ignored
- Sensitive Volume
 10x10x10 μm

Charge collection spectrum for 20 MeV C-12 source.

SOI Microdosimetry-2 in neutron therapy : Harper hospital

Neutron beam production: •Superconducting cyclotron 40 μA •Target: Be(d48.5) •Average energy of neutrons:20MeV Good agreement with TEPCTEPC has an advantage in low LET region

Central axis, different depth. Field 10x10 cm2

Lateral 7cm out of field at depth 10 cm

60

UNIVERSITY OF

WOLLONGONG

GEANT4 Simulation : Event Tallying in FNT

- For each event:
- Calculate ionisation energy loss, ε, in silicon sensitive volume and hence lineal energy event, y
- Record particle atomic number, Z
- Record whether particle crossed, started, or stopped in sensitive volume

Results and Discussion Experiment vs. Simulation

- Spectra share similar features
- Peak in region 1-100 keV/μm
- "shoulder" at ~70keV/ μm
- Peak in region 100-1000 keV/μm
- Spectra for each particle type to determine relative contribution

I. Cornelius , A.Rosenfeld , IEEE Trans. on Nucl. Sci , 51, N3, 873-877, 2004

Results and Discussion: Z Components

- Protons (elastic + inelastic) dominate 1-100 keV/μm peak
- 100-1000 keV/μm peak dominated by alphas
- Significant contribution by Si recoils
- Small contribution by Carbon
- Create spectra for starting, stopping, and crossing particles

Results and Discussion Starters, Stoppers and Crossers

- Crossers dominate spectrum
- Stopping proton contribution significant. Source of "shoulder" at ~70keV/µm
- Starters (Si, Alphas) dominate 100-1000 keV/µm peak and contribute to approximately 20% of total dose

- Microdosimetric spectra from 10 mm SOI micro at consecutive positions in a Bragg Peak
- Possibility to estimate Q of the beam

For more details see: A Rosenfeld "Electronic Dosimetry in Radiotherapy", Rad. Meas., 41, 134-153, 2007

- Determine the neutron field in free air as a function of distance from the treatment field edge.
- Assess the change in neutron dose as a function of depth within a polystyrene phantom.
- Assess the change in neutron dose as a function of distance from the treatment field edge at depth within a phantom.
- Assess the neutron dose along the central axis past the Bragg Peak

Experimental Setup

- The microdosimeter was moved parallel to the central beam axis 5cm from the field edge.
- The device was centred to the height of the central axis
- Incident protons of 225MeV were used.

Results LLUMC

RADIATION PHYSICS

Out of Field:Experimental Setup

- The microdosimeter was moved parallel to the central beam axis 5cm from the field edge.
- The device was centred to the height of the central axis
- Incident protons 28.5cm range in water were used.
- Modulation SOBP 10.4cm

Prostate field, double scattering technique, MGH

- Proton energy= 28.78 cm , modulation =10.38 cm
- Patient specific brass aperture 40 cm2, 7.5x7.0 cm2,
- Modification devices: lead foils fixed scatterer followed by a rotating wheel modulator, variable collimating jaws, lead second scatterer and patient aperture

RADIATION PHYSICS

Results:Dose Equivalent and Q

Scanning parallel to the beam at 5cm offset

- 0.9 mSv/Gy < $H_{aperture}$ < 5.5 mSv/Gy
- 0.5 mSv/Gy < H_{block} < 7.1 mSv/Gy
- H_{aperture} has a different dependence on depth than H_{block}
- Scattered primary protons affects H and the determination of Q up to 22.3 cm depth
- Downstream of the Bragg peak, difference in H is due to neutron generated in the phantom

UNIVERSITY OF

•Scanned carbon/proton with range in water

- •Range 2-30 cm in 1 mm steps
- •The beam can be delivered in 10 intensity steps
- •Scanned field in the isocenter is 20 x 20 cm2 FWHM of PSB 10mm

CMRP Collaboration with Heidelberg (Dr Maria Martisikova *et al* and Milano Politechnik (Prof S. Agosteo ,Prof A. Fazzi *et al*)

Heidelberg HIT Experiment

- Two treatment plans were used
 - 5 x 5 x 5 cm2 cubic irradiation using a Spread Out Bragg Peak (SOBP)
 - Energy range from 124.25 MeV/u to 202.95 MeV/u in 18 energy steps or slices (4.32 MeV/u steps in energy)
 - Pencil beam profile of 6.7 mm FWHM in diameter
 - Actual brain tumour treatment plan
 - Energy range from 142.09 MeV/u to 266.08 MeV/u for brain treatment
- Both treatment plans calibrated for dose in water
 - 1.2 cm diameter ionisation chambers used for verification of dose plan in a water phantom
- PMMA phantom used for the experiment
 - $\rho_{PMMA} = 1.17 \text{ g/cm}^3$
 - $\rho_{water} = 1 g/cm^3$
 - Therefore range in PMMA ~85.47% that of range in water

- Cubic shaped dose profile
- Proximal edge (E_{min} =124.25 MeV/u) depth in water = 36.8 mm
- Distal edge (E_{max}=202.95 MeV/u) depth in water = 86.8 mm
- 5 x 5 x 5 cm³ SOBP painted with PSB, FWHM 10mm
- Delivery of SOBP with constant dose in SOBP region
- y_D Dose mean lineal energy (RBE) simulated based on measured microdosimetric spectra with SOI microdosimeters

LEM treatment planning-dose cube

Parameters of LEM: ➤Assumption that chordoma cells

for the tumour (cube 5x5x5 cm3)

➢ Rest of phantom volume are brain cells

➢Voxel size in TPS 1x1x1 mm3

 $\succ \alpha$ and β parameters of LQM for both cells type were the same: α=0.1Gy-1 and β=0.05 Gy-2

Emin=142 MeV/u Emax=266 MeV/u

PMMA (mm)

PMMA (mm)

 $\bar{y}_{\scriptscriptstyle D}$

•5x5x5 cm3 SOBP painted with PSB, FWHM 10mm

 \overline{y}_F

- •Delivery of SOBP of constant RBE in SOBP region (non constant absorbed dose)
- •Yf-frequency average lineal energy
- •Yd-dose average lineal energy (RBE)

Microdosimetric spectra was collected along the Spread Out Bragg Peak.

C -12 SPB :5 x 5 x 5 cm3 dose cube

C -12 SPB :5 x 5 x 5 cm3 dose cube

C -12 SPB :5 x 5 x 5 cm3 dose cube

C -12 SPB :5 x 5 x 5 cm3 dose cube

C -12 SPB :5 x 5 x 5 cm3 dose cube

SOBP: SOI Microdosimetry summary

SOI microdosimetry spectra provides specific signatures of the field composition while LEM is integrated

SOI microdosimetry Yd: 3.5 increasing

► LEM RBE: 2.5 increasing

Similar behavior downstream of SOBP

Scaling in depth is required

CENTRE FOR **RADIATION PHYSICS**

94

ARDENT

HIMAC, July ,2013 Experimental Setup,

Joint CMRP -Polimi ARDENT experiments

2nd Generation SOI Microdosimeter

➢ Passive 290 MeV/u C-12 beam

- Pristine and SOBP delivery
- SOI and ∆E-E microdosimetry
- ➢In field and out of field microdosimetry

RADIATION PHYSICS

1st Generation SOI Microdosimeter

Experiment at HIMAC, Japan, July 2013

TEPC and MKM model calculation

Measured by CMRP microdosimeters

correction: $\overline{y}_F = \int_0^\infty y f(y) \, dy$

 $\overline{y}_D = \int_0^\infty y d(y) \, \mathrm{d} y$

 $=\frac{1}{\overline{y}_{F}}\int_{0}^{\infty}y^{2}f(y)\,\mathrm{d}y$

Saturation
$$y^* = \frac{\int_0^\infty y_{sat} yf(y) dy}{\int_0^\infty y f(y) dy}$$

where the saturation co is:

98

$$y_{sat} = \frac{y_0^2}{y} (1 - e^{-(y/y_0)^2})$$

RADIATION PHYSICS

14 October, 2013

3D "Mushrooms" microdosimeter design: 3D MiMiC collaboration CMRP-SINTEF-ESRF

 Drilling hole in Si wafer using DRIE

 The holes are filled with polysilicon

 The trench is etched and then doped using gas doping and filled with polysilicon

 Finally the silicon surrounding the SVs is etched away

Deposition of PMMA

Substrate thinning

-

-

-

-

-

UNIVERSITY OF WOLLONGONG

* * *

101

-

-

-

--• -------0 ------------------• ------

S. Fris

W.10

GEANT4 SIMULATION FOR 3D MICRODOSIMETER EMBEDDED IN PMMA

14 October, 2013 Linh Tran et al. presented at RADECS 2013, Oxford, UK RADIATION PHYSICS

Tissue equivalent conversion for silicon mushroom microdosimeter in response to avionic isotropic neutron field.

ARDENT Summary of SOI microdosimetry systems

For more information on Silicon Microdosimetry look at :

New book has been published recently by USNA/NSBRI- summarizing our findings during the projects supported by NSBRI, ARC and NHMRC grants. Collection of more than 40 papers and reports on silicon microdosimetry and its applications. Can be useful for ARDENT students. Thanks to Prof Jim Ziegler, USNA

Entrepreneurial Physics Students is reality of CMRP and future of Australia and ARDENT is a step to the FUTURE of Radiation Detection Science

- Students given opportunities to undertake training in research commercialisation training schemes
 - Ash Cullen
 - Michael Weaver
 - Jeremy Davis
 - Kevin Loo

Conclusion

- Silicon SOI microdosimetry has been proven as useful
- Option for characterization of mixed radiation fields
- High spatial resolution (better then 0.5mm) SOI microdosimeters is useful in RBE studies of distal part of SOBP in proton and HI therapies that impossible with TEPC
- Important design issue is a high definition of SV and isolation of them from Si matrix to reduce contribution of inelastic reactions in Si
- 3D detector technology is a step forward to advanced SOI microdosimeter.
- Next step is integration of 3D SOI microdosimeter sensor with readout electronics on the same chip.

Acknowledgement

- CMRP current and former PhD students and wide national and international microdosimetry collaboration.
- Australian collaborators: ANSTO, UNSW
- International collaborators: LLUMC, MGH, Gershenson Cancer Centre, MSKCC, USNA, NSBRI-USA, Politechnic Milano-Italy, SINTEF – Norway, Heidelberg HIT, PTB –Germany, NIRS-Japan

Sheraton Mirage, Port Douglas, Australia September 8th-13th 2014

UNIVERSITY OF WOLLONGONG

RADIATION PHYSICS

109