THE STARTRACK EXPERIMENT

nanodosimetric STructure of hAdRon TRACKs

A really complicated experiment with interesting results

Valeria Conte

2nd Annual Workshop Milano, October 2013

CONTENTS

□ GENERALITIES OF TRACK STRUCTURE

THE EXPERIMENTAL SET UP The rational of the experiment The measuring procedure

DATA ACQUISITION AND DATA ANALYSIS How to handle experimental data

□ RESULTS

Some interesting features of the track structure of light ions

THE TRACK STRUCTURE OF IONIZING PARTICLES

The hypothesis: The damage to segments of the DNA is initiated to a great part by ionizing processes

Effectiveness of radiation strongly depends on the track structure

THE TRACK STRUCTURE OF IONIZING PARTICLES

Martin Street

Characterization of Particle Track Structure by Measuring the frequency distribution of the number of ionizations in nanometre-sized target volumes

Effectiveness of radiation strongly depends on the track structure

THE TRACK STRUCTURE OF ENERGETIC IONS

The track component due to primary-particle interactions: Track-core region

The track component due to secondaryparticle interactions: Penumbra region

A detector to measure the track structure characteristics in the core and in the penumbra

THE PHYSICS OF THE INTERACTION

A «picture» of the track structure with a pixel of 20 nm

STARTRACK: THE EXPERIMENTAL SET UP

RATIONAL OF THE EXPERIMENT

A narrow parallel particle beam is passing a cylindrical target volume of diameter *D*, at impact parameter *r*

RATIONAL OF THE EXPERIMENT

A narrow parallel particle beam is passing a cylindrical target volume of diameter *D*, at impact parameter *r*

SINGLE IONIZATION (ELECTRON) COUNTING

Counting single electrons

 (\mathbf{r})

single electron gain distribution 0.5 0.4 $\overline{G} = 1.8 \times 10^{7}$ 0.3

Small volume \Rightarrow small $\nu \Rightarrow$ high gain \Rightarrow large fluctuations

Peak amplitude $h \propto v \times G$

 $\nu \setminus A$

$$\left(\frac{\sigma_h}{h}\right)^2 = \left(\frac{\sigma_v}{v}\right)^2 + \left(\frac{\sigma_G}{\bar{G}}\right)^2 + \cdots$$

$$\left(\frac{\sigma_G}{\bar{G}}\right)^2 = \frac{1}{\bar{G}}\left(\frac{\sigma_A}{\bar{G}}\right)^2 \qquad \left(\frac{\sigma_A}{\bar{G}}\right)^2 \text{ Single electron}$$
avalanche varian

 $\langle A \rangle$

Because of the small number v of initial electrons, the resolution of measured signal is strongly influenced by gas gain fluctuations.

Ionization measurements based on counting of individual electrons

STARTRACK: the device

SINGLE IONIZATION (ELECTRON) COUNTING

Average arrival time and std of the time distribution controlled by the drift *E* field

At low electric fields, the diffusion is symmetric. $\sigma_L = \sigma_T$

$$\omega = \mu E$$
 $\sigma = \sqrt{\frac{2D_{L,T}x}{w}} = \sqrt{\frac{2\varepsilon_K x}{eE}}$

 μ : mobility coefficient; $D_{L,T}$: diffusion coeff. ε_k : characteristic energy x: drift distance

E: electric field

Gaining factor: longitudinal diffusion

Dispersive factor: transverse diffusion

STARTRACK: DATA ACQUISITION

DATA ACQUISITION AND ANALYSIS

🖬 Gage	Sco	pe	(Pro	fes	siona	al e	ditio	on)	ver	r. 3.	82.	22	- [0	:\$22	2G8-	1GH	lz:Y	/T1]																						Ga	G	z E		×
🔄 Eile	⊻iev	w c	aptu	re]	[ools	<u>W</u> ir	ndow	νH	<u>l</u> elp																																		- 8	×
2	(5	⇒	<u>æ</u>		*	*	(i	(+	* <mark>]</mark> *	+ ⊤) @	2	Q.	ortiz	≋	\wedge	6	<u> </u>	∱	Ju	ſ	n f	(×)	} H	1	•		5	Ш	I	₩	1	4		⇒	\$	8	bits	~	*			
1.00 0)S/s	; -		•				'		· ·									т		'			-	L								· ·				т '							
2000		-				- '							-	··									7	-		Ť	ΠĒ	-	Li			<u> </u>												İ
2000																								+	·				; } .															
																								2					r 1 1 1															
																								-			'		(
		-				•				• •					•									-									•				• •			•				
																								-																				
																								+					· ·															
																													í I F															
																							ा			<u> </u>	'										1 1							
										' 1															1												τ' · ·			· 1				۳
																													(
																								-																				
		-																						-																				
																													í															
	v			~f	or	m	~	~	ç,	16		. ~	10		at	h	~ r	~	~		\sim	n		a	<u> </u>	+ ~	- f	fre	~~		~			٦f	1.	.1	n c		1	h	, ,			
		٧ć		EI			5	0	1	10	ļ	ιs	IE	; ; 	gι		aı	e	ა	a		Ы	e	u	a	lò	a 1		ec	ļu		IC,	y (וכ יייי	1>	< 1	0	5) ·	by	/ 2	l		
	F	ינ		ar	na	O	gι	JE	e t	0	d	gr	ta	ll a	ac	q	ມເ	SIt	IC	n	С	a	rc	18	an	d	S	tC	ore	eo	l t	or	01	†-I	IN	e	ar	າa	ly	SIS	5.			
																																												~
Rea	iy	<	Tim	eba	se: 2	l µs		Μ.	Pos	: -2.	Oµs		_					_			_				_	_					J												>	J

DATA ANALYSIS: 1. CORRELATION OF RAW DATA

To increase the signal-to-noise ratio, correlation techniques are applied off-line to the raw pulse trails.

The correlation method

In this technique, each digitized primary electron track is correlated with a typical pulse

$$C_{\tau} = \sum_{t=0}^{N-1} f_t g_{t+\tau}$$

 f_t Search Spectrum

- g_t Data Spectrum
- C_t Correlated Spectrum
- Pulses above a threshold are counted

Number of pulses	Arrival time/ns	Peak amplitude/mV
3	9500	300.3
	10250	400.8
	10800	464.6
1	11000	328.2
2	11132	25.2
	12898	56.4

DATA ANALYSIS: 2. AMPLITUDE & TIME THRESHOLDS

consistent with the expected drift time.

DATA ANALYSIS: 3. BACKGROUND SUBTRACTION

The measured cluster distribution $\tilde{P}_{\nu}(r)$ is the overlap of primary electron distribution $P_{\nu}(r)$ and a background distribution $B_{\nu}(r)$ ν

$$\tilde{P}_{\nu}(r) = \sum_{j=0}^{r} P_{\nu-j}(r) B_j(r)$$

Background distributions are also measured and unfolding procedure is applied

$$P_{\nu}(r) = \sum_{j=\nu}^{N_{max}} \tilde{P}_{j}(r) B_{j-\nu}(r)$$

19

DATA SIMULATIONS

Dedicated Monte Carlo code developed (Grosswendt).

Response function included in the Monte Carlo code.

 $P_{\nu}(r)$ probability of ν ionizations at impact parameter r

 $M_1 = \sum_{\nu} \nu \cdot P_{\nu}(r)$ mean cluster size

 λ_{ion} Ionization mean free path of the primary ion

 D/λ_{ion} Mean number of electrons set in motion by the primary ion along a path length D

$$M_1 \propto \frac{D}{\lambda_{ion}}(m_1)$$

CORE REGION impact parameter *r* = 0 nm

Ionizations produced by the primary particles + ionizations produced by the secondary electrons (δ rays)

PENUMBRA REGION impact parameter *r* > 0 nm

Ionizations produced only by $\delta\text{-rays}$

TRACK CORE

Sparsely ionizing particles, like 20 MeV protons, and densely ionizing particles, like 26.7 MeV ⁷Li-ions, show markedly different ionization patterns

E I V ₹ X ⊤ ↓ ⊤ I X ⊤ I I E

With decreasing ionization mean free path length of the primary ions the distributions become peaked and shift to larger cluster sizes

TRACK CORE: same velocity, different Z

1. Efficiency for large cluster **sizes**.

Cluster size v

TRACK CORE: same *Z*, different velocities

AGREEMENT BETWEEN MEASUREMENTS AND SIMULATIONS

Does it mean that the experimental results are correct?

NO !

Validation of the Monte Carlo simulation code

Simulations as a tools to supplement experimental measurements

TRACK STRUCTURE in the PENUMBRA impact parameter *r* > 20 nm

Ionizations produced only by the secondary electrons $(\delta rays)$

TRACK PENUMBRA: 240 MeV ¹²C-ions, different *r*

TRACK PENUMBRA: $P_{\nu\geq 1} imes r^2/D^2$

From the molifip bed by the antim on end of the same of the same, the radiation quality of second and any action seems to be the same, only the probability of being hit decreases with increasing r.

TRACK PENUMBRA: different Z and velocities

cluster size

TRACK PENUMBRA after dividing $P_{\nu \ge 1}(Q) \div M_1$

cluster size

CONCLUSIONS

The track structure is mainly determined by $\lambda_{ion}(M_1)$

 $M_1 \propto \frac{D}{\lambda_{\rm ion}}$

The shape of the cluster size distributions is largely independent of *r* and also of particle type and velocity.

Cluster-size distributions in nanometre-sized volumes reflect special properties of particle track structure

240 MeV ¹²C-IONS HOMOGENEOUS EXTENDED BEAM

Total cluster distributions for beams of different radius R_{field}

34

From $R > 3 \text{ mm} (1.5 R_V)$ the shape is the same

240 MeV ¹²C-IONS HOMOGENEOUS EXTENDED BEAM

Contribution from $R > 3 \text{ mm} (1.5 R_{V})$ only increases the fraction of zeros

Challenges:

- 1. a practical instrument for track structure measurements.
- 2. a practical instrument (TEPC) for measurements at the nanometer level.

