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Radiation Damage: The Characteristic Target Sizes

In Life Science
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The Transition from Radiation Dosimetry to Radiobiology Is

Characterized by a Dramatic Reduction of the Target Volume
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Traditionally it iIs assumed that radiation
damage is related to the energy absorbed in a target volume



The ‘Golden Rule’ of Conventional
Applied Radiation Physics
Radiation effects in matter are

related to the amount of energy
deposited within a target

—— Radiation Biology
— Radiation Therapy
— Radiation Protection

The abksessadydosedtpocspt
c A homogeneousﬂiEtribution of

energy dﬂ)oﬁtiﬂs—
* A secondary particle equilibrium

* The initiation of radiation
effects iIs really proportional to
absorbed dose




The Failure of Absorbed Dose: Definition of the
Relative Biological Effectiveness (RBE)
Survival of CHO-K1 Chinese Hamster Cells (Weyrather et al., 1999)
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Radiobiological effects cannot be
described by absorbed dose

SF = e—(aD+ﬂD'2)

biologically defined
radiation quality

Dref(SF)

RBE = —1__~
D(SF)

Carbon ions
11 MeV/u

C s 8
absorbed dose D / Gy




Relative Biological Effectiveness (RBE) of lonizing

Radiation as a Function of Linear Energy Transfer (LET)
05 for Chinese hamster cells: D. T. Goodhead, 1987
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If the LET I1s known, the biologically.relevant dose is
given By: D ciéeant = RBE x:D
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Radiobiological Cross Section for lonizing Radiation as

a Function of Linear Energy Transfer (LET)

10° - calculated from the data of Goodhead, 1987
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The Track Structure of lonizing Radiation: Track

Segments in Water, 100 nm in Length
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The higher the LET the more complex is the track
structure of ionizing radiation
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The Idea of Microdosimetry: to Measure the Lineal

Energy as a Substitute of LET

LET, is related to the energy loss | £
of an ionizing particle and lineal ineal energy: y = 3
energy to.the.energy depositin a relative frequency of y:

target volume
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The Idea of Microdosimetry: the Sensitive Volumes

Are the Nuclel of Living Cells (a Few pm in Diameter)

The measurements are made in gaseous

£
volumes corresponding in size to liquid lineal energy: ¥ = =
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The Idea of Microdosimetry: the Lineal Energy is

Determined by Measuring the Amount of lonization
per Energy-deposition Event

The measurements are made in gaseous The consequence
volumes corresponding in size to liquid of this procedure is

water spheres,\l1 um to 2 ym in diameter _
A the averaging over

comparably large
track lengths:

Hence, a detailed
Information on
track structure is

N lost.

From the point of view of track structure, the measuring
volume should be comparable in size to that of the most
sensitive target volume of living cells




The “True* Target Volumes of Life Science

The real target
volumes of radio-
biology and also of
radiation physics
are those of the
substructures of
cell nuclei
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The “true” target volumes of
life science are of nanometre
size

copyright: - www.cellbio.utmb.edu - www.people.virginia.edu




Radiation Damage to Genes or Cells Starts with the

Initial Damage to Segments of the DNA
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Radiation damage strongly depends on the number of relevant particle
Interactions within then DNA, and, hence, on particle track structure



The Number of Particle Interactions in Nanometric
Volumes gives a Picture of Particle Track Structure

The track structure of ionizing particles is expressed
by the frequency distribution of the number of
particle interactions in nanometre-sized volumes



The Characterization of Particle Track Structure by
Measurement

target volumes must be measured

The needs for metrology:

% an appropriate measuring procedure 2
»* measuring quantities which take into account RBE
they must show, for instance, a saturation effect as
a function of LET like radiobiological cross sections

Zag The damage to segments of the
\;»;%& DNA is initiated to a great part by ionizing
Yk processes A

ey



The Idea of Experimental Nanodosimetry

» lonization cluster-size formation in nanometric cylindrical liquid
water volumes is representative for the damage to the DNA

Definitions:

The cluster size is the number v
of ionizations produced by
a particle in a specified
target volume

P,(T) Is the probability
of producing an
lonization cluster L

of size v
particle

energy T



Principle of a Nanodosimetric Measuring Device

Based on Single-ion Counting
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The Particle Track Structure Is Reflected by Cluster-

size Probabilities iIn Nanometre-sized Volumes

Cluster-size Distributions in a Liquid Water Cylinder, 2.3 nm in
0 Diameter and 3.4 nm in Height
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The Relation Between lonization Cluster-size
Formation and Life Science

The probability P, to create a
cluster size v = 1 should be

proportional to the probability
of SSB formation in the DNA

The probability F, to create a
cluster size v 2 2 should be

proportional to the probability
of DSB formation in the DNA




Cluster-size Probability P, in a Liquid Water

Cylinder, 2.3 nm in Diameter and 3.4 nm in Height
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The.data show a universal curve describing the probability
P, as a function of mean cluster size M; independent of the
type of primary radiation
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Cluster-size Probability F, in a Liquid Water

Cylinder, 2.3 nm in Diameter and 3.4 nm in Height
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probability F, as a function of mean cluster size M,
Independently of the type of primary radiation
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The sum probability F, shows a saturation effect as a
function of mean cluster size M,
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mean cluster size M,



Nanodosimetry, the Missing Link Between Radiation

Metrology and Life Science
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Radiation quality: The cluster-size probability F shows a
saturation effect like radiobiological cross sections. Hence,
F, Is a natural parameter to describe radiation quality

y%ﬁ The cluster-size probabilities ‘gﬁ
\ . . ‘ﬁé;&.‘.l

% P, and F, are directly correlated with the damage
“x to the DNA K




Cross Section of SV40 Viral DNA for Double-strand-

break Formation, as a Function of LET
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There s in excellent agreement between'the scaled
sum-probability F, and radiobiological cress sections
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Renormalized RBE of Light lons for Double-strand

renormalized RBEDSB
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Breaks in SV40 Viral DNA

|l Radiation quality with
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IS measurable using
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Cluster-size Probabilities in Nanometre-sized

Volumes are Descriptors of Particle Track Structure
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Vision of the future: g2

Absorbed dose will be exchanged or, at least,

supplemented by nanodosimetric quantities to
characterize radiation quality in unknown
radiation fields

’*?% Practical instruments f"
\«%& are available which can be used in unknown
¥

AY,
radiation fields A



From Microdosimetry to Nanodosimetry, a
Summary

Microdosimetry

°* Practical instruments are available but should be
extended to nanometric sizes
» S T s s
Nanodosimetric quantltles

R

* reflect the track structure of IeNizing radlatlon

- O —

e pbehave, as afunctlon of radiation quality, S|m|IarIy
to radlatlon iInduced damagesto the DNA

e are measurable using single-ion or single-electron

countingtechniques but practical instruments are
not yet available



