

Architectural Review of the LHC Orbit & Tune Feedback Systems, May 7th, 2013: After three Years of LHC Operation

Issues and required Improvements related to Feedback Operation after LS1 Ralph J. Steinhagen,

CERN, Beam Instrumentation Group

'Hitchhiker's guide to LHC Feedbacks'

DON'T PANIC

FBs worked from 'Day-I' for the first three years of LHC

 early LHC operation took the 'edge off' from otherwise more complicated/demanding issues

(FIDEL, new machine, model uncertainties, etc.)

- \rightarrow liberated resources for fast LHC commissioning
- Pushed envelope w.r.t. required FB performance
- This review is about identifying technical issues and improving them for post-LS1 LHC operation

- Some questions that come to mind:
 - What's not working?
 - What do we want to improve and why?
 - By how much do we want to improve?
- Scientific/engineering approach: you can only improve what you can measure \rightarrow How to measure/quantify the impact of feedbacks on LHC?
- An attempt of two possible metrics:
 - Impact on machine w.r.t. beam dumps
 - Feedback performance w.r.t. limits on parameter stability and robustness
 - i.e. how much would we gain in terms of bandwidth or stability margin

Common Feedback/Feed-forward Control Layout Control implementation split into two sub-systems:

- LHC feedback systems most visible faces are:
 - Feedback Controller (OFC): actual feedback controller logic
 - Service Unit (OFSU): Interface to control system/the world
- However 3500+ devices (~130 FE) and many technical services like FESA, CMW, timing, technical network involved
 - Overall strength depends on the reliability of the weakest link
 - One of this review's aim: identify 'what' and 'were' to improve

- Laurette@Evian'11: "[in 2012] ... => Should be left with 2-3 dumps! but what will we find if beams are not dumped?"
 - Consider only PM with E>450 GeV, I_{B1/2}>10¹⁰ protons/beam, and …
 - only dumps, no near-misses, events causing losses without dump, or events that have been recovered by OP or the sequencer
 - PM comment containing "FB", "Feedback", "OFC", "OFSU", "BBQ", "BPM", "RT", "Orbit", "Tune", "Instability"
 - OFC/OFSU crash reports
 - ... plus some cleaning up of "no orbit change", unrelated and "OK" statements

	Total PMs:	FB & Co:	Percentage:
2010	453	8	1.7%
2011	684	30	4.4%
2012/13	851	28	3.3%

Disclaimer: numbers to be taken indicative and not as absolute

Some failures are an interplay between multiple sub-systems (double counting!)

(*counted only if affecting feedback and/or during RAMP & SQUEEZE)

	FB	OFC	OFSU*	BBQ	BPM*	QPS/ COD	Orbit	Q/Q'
2010	8	2	0	2	0	3	9	0
2011	30	2	5	18	3	14	13	6
2012/13	28	4	10	1	7	1	17**	30**

- BBQ/Tune-FB/QPS interplay may become important again after LS1 if we cannot raise the QPS thresholds ... need to preserve this improvement.
- Some system failures related to problems with infrastructure where equipment owner has limited control over (i.e. FESA, CMW, timing, TN network)
 – For what it's worth: indicates the trends and area to be looked further into.
- Marked "**" cases not necessarily attributed to FB failures but illustrate the increased criticality of the control of orbit and Q/Q' during 2012:
 - $\quad Smaller \ \beta^* \rightarrow tighter \ collimator \ tolerances \leftrightarrow tighter \ orbit \ tolerances$
 - Larger bunch intensity/tighter collimators(?) \rightarrow increased single bunch instabilities
- -> Should address this if we want to push the envelope (i.e. through new/better BI diagnostics) 6

- A) Measurement quality (BPMs, BBQ) \rightarrow transients on orbit, tune
 - \rightarrow collimator induced losses/QPS trips of RQT[D/F] \rightarrow dump
 - \rightarrow outside the scope of this review, but a main issue w.r.t. Tune-FB
- B) Front-end/SW infrastructure problems: FESA, CMW, Timing & network → covered in detail in Stephane's talk
 - Threading issues, non-RT behaviour, crashes, external load factor i.e. slow clients, technet switch overloads
 - non-RT behaviour of input data stream \rightarrow no data \rightarrow pausing feedback \rightarrow exceeding loop latencies, either
 - a) no correction \rightarrow orbit drift \rightarrow dump
 - b) classical FB instability (too high BW) \rightarrow additional orbit drift \rightarrow dump
 - Invalid data most believed to be/being fixed (i.e. timing, memory corruption)

C) Insufficient loop stability margin

- mismatch between actual optics and the one used by the OFC
- Optics re-computation errors being fixed in OFSU
- FB running at the design stability limit

 Installed RF commutation switches directly after BPMSW.1[L/R]5.B[1/2] to assess electrical offset drifts (RF cables, WBTN front-end, integrator, etc.):

Measurement drifts ~100 um/h w/o significant temperature changes \rightarrow Orbit-FB may convert these measurement errors into real orbit shift

Definition of 'Real-Time'

- ... "A system is said to be real-time if the total correctness of an operation depends not only upon its logical correctness, but also upon the time in which it is performed. [..] are classified by the consequence of missing a deadline:
 - Hard Missing a deadline is a total system failure.
 - Firm Infrequent deadline misses are tolerable, but may degrade the system's quality of service. The usefulness of a result is zero after its deadline.
 - Soft The usefulness of a result degrades after its deadline, thereby degrading the system's quality of service."
- LHC feedbacks are 'firm real-time systems'
 - some (limited) margin on occasional missing data
 - additional latencies are critical for loop stability, e.g. missing packet reduces phase margin by ~15°@1Hz (0° < stable < 90°< unstable < 180° max. instability)

$$\Delta \varphi = 2 \pi f_{bw} \cdot \Delta t_{delay}$$

BPM-to-OFC UDP Transmission Errors – Example

- ... perceived in the CCC as 'BPM disco' effect (since 2010)
- Low-level: bursts, non-synchronised or missing data at the OFC

 Compromises OFC data concentration → latencies → FB loop instability (missing packet ≈ 15° loss of phase margin @1 Hz) → losses on collimators → dump

Tracking of detailed Real-Time Latencies per Sub-System Example: Technical Network

- Increased demand of data, new instrument and prototype systems increased the overall technical network load,
 - i.e. LSS4 real-time data competing with other clients causing loss of BBQ data and affecting Q' measurement (sign errors)

- Given switch has been upgraded during the last Christmas TS
 - may possibly discover other (new) bottlenecks after LS-1 due to new systems being installed/commissioned

- Closed-loop bandwidth and phase margin depend on excitation amplitude:
 - + non-linear phase once rate-limiter kicks in...

Orbit Stability during β*-Squeeze

Losses and orbit movement at H-TCP.C6R7.B2 well correlated

- Maximum drift rates of 40 um/s \rightarrow (close to) limit of Orbit-FB at 4 TeV
 - Underpinned by FB instability observation for 5x bandwidth increase
- At this speed, OFC needs to operate with correct optics

Correction during Squeeze with imperfect Optics

Bandwidth modifier w.r.t. eigenvalue index (<1 more stable, >1 diminishes stability margin)

Typ. opertional bandwidth <10% of maximum possible (sometimes too slow)

Planned Improvements for after LS-1 I/III Measurement Data Integrity

- Temperature stabilised BPM racks (should minimise but not remove systematic drifts)
- BPM signal RF commutation switches on BPMSW's (already deployed in IP5) \rightarrow identify and compensate measurement errors w.r.t. real orbit drifts
- Redundant IR-BPM read-out electronics (Diode-Orbit acquisition), tbd:
 - naming convention of additional channels
 - integration w.r.t. WBTN-based BPMs
 - initial deployments only at BPMSW.1[L/R][1,5,8,2].B[1/2] (vs. full Q1-Q7)
- BPMs in TCTP collimator non-trival integration to be discussed/agreed upon
 - Orbit computation needs settings of gap centre, opening and angle
 - new orbit reference management (collimators are moving targets vs. collimator move according to the target? ColUS?)
- ADT as Q/Q' source (important SW integration effort)
 - Split BBQ use-cases into independent chains, i.e. optimised parameters for Q', Tune-FB, coupling, beam-beam/stability studies implementation tbd.

Required Improvements for after LS-1 II/III Improvements of Loop Stability

- Establish true 'firm real-time' constraints on input data
 - review BPM/BBQ UDP transmission robustness and implementation (in particular the interplay with CMW, FESA, proxies etc.)
 - decouple RT traffic from those needed for operation and others (TN QoS, IT-CS)
- Operate feedback settings closer to actual machine parameters/requirements
 - Optics/reference changes during squeeze
 - Gain scheduling based on beam mode/operational scenario
- Impact of LHC mode-operation changes on feedbacks (reference management)
 - 'Collide & Squeeze', 'Ramp & Squeeze', dynamic vs. in-steps???
- validate BPM functionality at least once per fill foreseen but not executed systematically (takes < 1 min and detects dead BPMs)
- Should re-visit option of having a dedicated full feedback test-bed

Required Improvements for after LS-1 III/III Diagnostics and Tracking

- and Improvements, Ralph.Steinhagen@CERN.ch, 2013-05-07 Issues Part3: LHC Feedback Review
- Attribute errors to the specific sub-systems
 - Finer granularity of post-mortem reports
 (i.e. system expert feedback and sub-categories)
 - better monitoring of technical infrastructure (FESA, CMW, timing, network)
 bits and pieces are there but expert-only features
- Better pre-warning, better GUI integration, particularly concerning overview (needs input from OP concerning level of detail)
- Re-establish 'OFC testbed' real-time beam physics simulation to test closedloop FB, latency footprints, error recovery etc.
- Miscellaneous (pending since 2011):
 - move remaining blocking TCP-based OFC↔OFSU comm. to UDP
 - more rigorous CPU shielding (including driver & non-FB services)
 - OFSU: user accessible 25 Hz data & PM buffer of all feedback states/data
 - Improve transparent full recovery after an OFC/OFSU crash
 - Orbit, Q/Q' and optics reference control, hot spare/additional systems
 - remove OFC functionality that should be covered in the OFSU (i.e. ORM recalc.)

- Old Concept and used at the SPS to assess controls aspects, orbit control strategies and possible issues prior to LHC operation.
 - Numerically expensive (10x OFC f_s): OK for SPS but was out-of-reach with avail. HW for simulating full LHC beam response in 2004/2005 (what concerns orbit, Q/Q')
 - 2013: memory bandwidth and CPU performance improved \rightarrow an option post-LS1?
- Would allow to test performance, control and integration aspects (+OP training)
- Additional validation tests prior to deploying a new OFC/OFSU version at LHC

Summary

- Generally, feedback performed their designed job. Pushing LHC machine parameter envelope also implied increased performance constraints on Feedback operation (notably orbit stability during squeeze)
 - \rightarrow Need to improve FB sub-systems to keep up with LHC progress post-LS1
- Main issues of 2012 dumps with beam related to:
 - Beam measurement quality
 - Front-end/SW infrastructure problems: FESA, CMW, Timing & network
 - Insufficient loop stability margin (tighter constraints than in 2010/11)
- A lot of progress and issues have been already addressed during 2012/13
- A set of important improvements are under way during LS1, notably
 - Temperature controlled racks & new Diode-Orbit ACQ for the IR BPMs
 - Improvements in the service infrastructure (CMW, TechNet, etc.)
- Need better diagnostics, warning and status indication of overall infrastructure, and better tracking and finer granularity of error assessment