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Abstract

In these notes, the theoretical details of the two-Higgs doublet model (2HDM) are
described with an eye toward developing benchmark scenarios for LHC Higgs studies.
In particular, the Type-I and Type-II 2HDM parameters are formulated subject to the
condition that the lightest CP-even Higgs boson is identified with the 126 GeV boson
discovered on 4 July 2012. Some preference is given to the region of parameter space
in which the couplings of this scalar to WW and ZZ approach the Standard Model
expectations.

1 Introduction

The most general two-Higgs doublet model (2HDM) consists of a Higgs scalar potential
with two real squared-mass parameters, four real self-coupling parameters, one complex
squared-mass parameter and three complex self-coupling parameters. In addition, all possible
dimension-four Higgs-fermion Yukawa coupling matrices are present. Such a model yields
new CP-violating neutral Higgs boson couplings, which imply that none of the three neutral
Higgs states have definite CP properties. In addition, this most general model leads to tree-
level flavor changing neutral currents (FCNCs) mediated by neutral Higgs bosons, which is
very strongly constrained by particle physics data.

In order to avoid these potential phenomenological problems, it is standard practice to
impose a symmetry on the Higgs-fermion couplings, which if chosen correctly will eliminate
all tree-level Higgs-mediated FCNCs. A possible symmetry that achieves this goal is a
discrete Z2 symmetry, in which one of Higgs doublet fields changes sign. If we focus for the
moment on the Higgs-quark couplings, there are two distinct implementations that leads
to the so-called Type-I and Type-II Higgs-quark interactions. Another possibility is to
impose supersymmetry. In its minimal implementation, the corresponding Higgs-fermion
interactions corresponds to Type-II.

In order to consistently impose the required symmetry, one must also enforce the symme-
try on the scalar Higgs potential. In the case of the discrete symmetry, the imposition of the
symmetry on the Higgs potential is actually more strict than necessary. In particular, one
can relax the symmetry requirement by imposing it only on the quartic Higgs interactions.
In this case, a quadratic term in the Higgs potential that mixes the two Higgs doublets is
allowed even though it explicitly breaks the discrete symmetry.1 One can also show that

1This generalization is also useful in that it allows one to simultaneously treat the MSSM Higgs sector
which allows this quadratic Higgs mixing term.
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although the inclusion of the quadratic Higgs mixing term will generate Higgs-mediated FC-
NCs at one-loop, these effects are small enough so as not to be in conflict with observed
data.

Hence, for the rest of this note, I will focus on the 2HDM subject to a discrete Z2

symmetry, which enforces either Type-I or Type-II Higgs-fermion couplings, and is at most
softly broken by a quadratic term in the Higgs potential that mixes the two Higgs doublets.
This provides a well-defined framework for experimental 2HDM studies.

2 Details of the 2HDM model

We begin with the most general 2HDM and impose a discrete Z2 discrete symmetry on the
quartic Higgs self-interactions and the Higgs-fermion interactions. In this section, we focus
on the scalar Higgs potential. Given two hypercharge-one, weak doublet fields, Φ1 and Φ2,
we impose a symmetry on the quartic Higgs self-interactions where Φ1 → −Φ1 and Φ2 → Φ2.
For simplicity, we also impose the requirement of CP conservation. In this case, the most
general scalar Higgs potential is given by

V = m2

11Φ
†
1Φ1 +m2

22Φ
†
2Φ2 − [m2

12Φ
†
1Φ2 + h.c.] + 1

2
λ1(Φ

†
1Φ1)

2 + 1

2
λ2(Φ

†
2Φ2)

2

+λ3(Φ
†
1Φ1)(Φ

†
2Φ2) + λ4(Φ

†
1Φ2)(Φ

†
2Φ1) +

{
1

2
λ5(Φ

†
1Φ2)

2 + h.c.
}
,

where the two potentially complex parameters m2
12 and λ5 are taken to be real. This scalar

potential is explicitly CP-conserving, although we must impose one further condition to avoid
a possible CP-violating vacuum that is a global minimum. Note that only the Φ†

1Φ2 + h.c.
term breaks the discrete Z2 symmetry, as advertised.

We now require that the minimum of the potential correspond to a CP-conserving vacuum
that does not break U(1)EM. In this case, the corresponding vacuum expectation values are:
〈Φ0

i 〉 = vi/
√
2, with tan β ≡ v2/v1 and v2 ≡ v21 + v22 = (246 GeV)2. Thus, we trade in

the two parameters m2
11 and m2

22 (via the potential minimum conditions) for v2 and tanβ.
This leaves six free parameters—m2

12 and the five real Higgs self-couplings, λ1, λ2, . . . , λ5.
From these six parameters, one can compute the four physical Higgs masses (mh, mH , mA

and mH±) and the neutral CP-even Higgs mixing angle α obtained by diagonalizing the 2×
CP-even Higgs squared-mass matrix. This leaves one free parameter left over.

The parameter cos(β−α) is a critical parameter of the model, as it controls the approach
to the decoupling limit. In particular, if we set cos(β−α) =, then the tree-level couplings of
h0 coincide exactly with the tree-level couplings of the Standard-Model Higgs boson. Since
current LHC data suggests that the observed Higgs boson is “Standard-Model-like,” we shall
assume in these notes that the value of cos(β − α) is not all that far away from 0.2

2Strictly speaking, one could also consider an alternative scenario in which sin(β − α) is close to 0, in
which case the heavier H0 would be identified with the newly discovered boson. At present, this scenario
cannot be ruled out, and should be presented as one of the benchmark points for further studies. I will come
back to this possibility later in these notes.
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In order to establish a strategy for benchmark scenarios, it is important to derive relations
between physical Higgs observables and the basis parameters that appear in the Higgs scalar
potential. Here, we shall follow Ref. 1. It is convenient to define the following four linear
combinations of the λi:
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4
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4
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1

2
λ
345

s22β , (1)
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2
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[
λ1c

2
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where λ
345

≡ λ3+λ4+λ5, and c and s stand for the cosine and sine of the angle that appears as
a subscript. The significance of these particular linear combinations will be addressed later.

The physical Higgs squared-masses can be expressed in terms of these coupling combi-
nations and β − α as follows:
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These are exact expressions. Note that eqs. (7) and (6) yield

m2
H −m2

h =
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. (9)

By definition, mh < mH ,
3 which imposes the constraint:

λ̂ sβ−αcβ−α > 0 . (10)

In light of eq. (10), we see from eq. (5) that

m2
h ≤ λv2 . (11)

We now impose a key assumption that the Higgs self-coupling parameters satisfy

λi

4π
<∼ O(1) . (12)

3In principle, it is possible to have mh = mH , but this is an isolated point of the 2HDM parameter space,
so we will neglect it.
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This is necessary to maintain tree-level unitarity and the perturbativity of the theory. Of
course, since the observed Higgs boson has a mass of about 125 GeV, eq. (11) already tells us
that λ satisfies eq. (12). We simply extend this rough upper bound to all Higgs self-coupling
parameters that appear in the Higgs scalar potential (which of course also applies to the
self-coupling combinations given in eqs. (1)–(4).

As previously noted, if cβ−α = 0, then the couplings of h match those of the SM Higgs
boson, whereas if sβ−α, then the couplings of H match those of the SM Higgs boson. For
the present analysis, let us assume that it is h that should be identified with the SM-like
Higgs boson. In this case, it will be convenient to eliminate the parameter λ̂ in favor of m2

h.
In particular, eq. (5) yields4
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Plugging this back into eqs. (6) and (8) yields
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As we approach the decoupling limit (cβ−α → 0), we interpret the above equations by noting
that eq. (5) implies that λ − m2

h/v
2 ∼ O(cβ−α). This implies that m2

H ∼ m2
A ∼ m2

H± ∼
O(1/cβ−α) ≫ m2

h.
Finally, the following result, which is easily obtained from eqs. (5) and (9):

λv2 −m2

h = (m2

H −m2

h)c
2

β−α . (17)

One can use this relation to obtain
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The couplings of the Higgs bosons to vector bosons are well-known (see e.g. Appendices
A1–A3 of Ref. 2), and can be expressed directly in terms of gauge couplings, sβ−α and
cβ−α. In the decoupling limit where cβ−α → 0 and sβ−α → 1, one can easily verify that the
couplings of h0 to gauge bosons reduce to the corresponding Standard Model values. The
Higgs self-couplings can be expressed in terms of sβ−α, cβ−α, the coupling combinations λ,

λ̂, λA, λF and three additional coupling combinations that only appear in the tri-linear and
quadra-linear couplings of the physical Higgs bosons (as discussed in Ref. 1). Perhaps the
only relevant Higgs self-coupling for Higgs phenomenology in the near term is the H+H−h

4Keep in mind that λ̂/4π <∼ O(1). This means that in the decoupling limit, as cβ−α → 0, we also have
m2

h → λv2.
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coupling, as this enters in the analysis of the charged Higgs loop contribution to h → γγ
decay. However, this contribution tends to be quite small, and we will neglect it in the
present discussion.

We end this section with a brief discussion of the Higgs-fermion interaction. The most
general Yukawa Lagrangian, in terms of the quark mass-eigenstate fields, is:

−LY =
2∑

a=1

{
ULΦ̃

0

aη
U
a UR +DLK

†Φ̃−
a η

U
a UR + ULKΦ+

a η
D †
a DR +DLΦ

0

aη
D †
a DR + h.c.

}
, (19)

where a = 1, 2, Φ̃a ≡ (Φ̃0 , Φ̃−) = iσ2Φ
∗
a and K is the CKM mixing matrix. The ηU,D are

3× 3 Yukawa coupling matrices.
We now extend the Z2 symmetry of the Higgs scalar potential to the Higgs-fermion

Yukawa Lagrangian. In addition to Φ1 → −Φ1, we assume that Φ2 and all the fermion fields
are unchanged, then it follows that ηU1 = ηD1 = 0. Thus, only Φ2 couples to the fermions.
This corresponds to the Type-I Higgs-fermion interaction. The diagonalization of the up-
type and down-type fermion mass matrices automatically diagonalizes the Yukawa coupling
matrices ηU2 and ηD2 , which yields flavor-diagonal couplings of the fermions to the neutral
Higgs bosons. The corresponding Higgs-fermion couplings depend on α and β as indicated
below:

Table 1: Type-I Yukawa couplings: ηU1 = ηD1 = 0.

h0 A0 H0

up-type quarks cosα/ sinβ cot β sinα/ sin β
down-type quarks and leptons cosα/ sinβ − cot β sinα/ sin β

The couplings of the neutral CP-even Higgs bosons to the up and down-type fermions
can be conveniently re-expressed by employing the trigonometric identities,

cosα

sin β
= sβ−α + cβ−α cot β , (20)

sinα

sin β
= cβ−α − sβ−α cotβ , (21)

One can check easily that in the decoupling limit where cβ−α → 0 and sβ−α → 1, the h0

couplings to fermions reduce to the corresponding Standard Model values.
Alternatively, one can extend the Z2 discrete symmetry such that Φ1 → −Φ1 and

DR → −DR (with Φ2 and all other fermion fields unchanged). In this case, Φ1 couples
exclusively to DR whereas Φ2 couples exclusively to UR. This corresponds to the Type-II
Higgs-fermion interaction. In this case, the diagonalization of the up-type and down-type
fermion mass matrices automatically diagonalizes the Yukawa coupling matrices ηU2 and ηD1 ,
which again yields flavor-diagonal couplings of the fermions to the neutral Higgs bosons.
The corresponding Higgs-fermion couplings depend on α and β as indicated below:
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Table 2: Type-II Yukawa couplings: ηU1 = ηD2 = 0.

h0 A0 H0

up-type quarks cosα/ sinβ cot β sinα/ sinβ
down-type quarks and leptons − sinα/ cosβ tanβ cosα/ cosβ

In this case, eqs. (20) and (23) provide the couplings of the neutral CP-even Higgs bosons
to the up-type fermions. Likewise, the couplings of the neutral CP-even Higgs bosons to
the down-type fermions can be conveniently re-expressed by employing the trigonometric
identities,

− sin α

cos β
= sβ−α − cβ−α tan β , (22)

cosα

cos β
= cβ−α + sβ−α tanβ , (23)

One can again check easily that in the decoupling limit where cβ−α → 0 and sβ−α → 1, the
h0 couplings to fermions reduce to the corresponding Standard Model values.

3 Benchmarks and Parameter scans

Eqs. (14)–(16) provide exact expressions for the masses of H , A and H± as a function of of
the known value of mh, the angle parameter β − α and the three self-coupling combinations
λ, λA and λF . To interpret searches for 2HDM scalars, we will need to fix certain parameters
in order to make the analysis tractable. Eventually, when the Higgs coupling data becomes
more precise (and assuming that no significant deviation from SM-like Higgs couplings is
observed), we can restrict the scan of cβ−α over values close to zero. At present, one must
take a less restrictive view.

My recommendations are as follows:

• Take mh ≃ 125 GeV as input into the analysis.

• I recommend scanning over values of |cβ−α| from 0 to 1/2 (corresponding to a very
rough SM-like h). The alternative case where we identify the observed 125 GeV scalar
with H will be treated separately.

• One must scan in tanβ as well, as this parameter (along with cβ−α) controls the Higgs-
fermion couplings, as noted at the end of the previous section. For the most inclusive
scan, I would take 1

2
<∼ tan β <∼ 50 to avoid excessively large Higgs couplings to either

top or bottom respectively.
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• For the coupling parameters λ, λA and λF , select a few representative values. Note that
eq. (11) implies that λ >∼ 1

4
. Additional restrictions apply to λA and λF by demanding

that mH± satisfies the current experimental bound (and likewise for mA, although
the experimental bounds in this case are much more model-dependent). I recommend
looking at a few sample values in which these coupling parameters are of O(1).

• When presenting results, I would provide plots of cβ−α vs. tan β, for benchmark choices
of λ, λA and λF .

Note that this proposal consists of a two parameter scan (over values of cβ−α and tanβ),
with discrete benchmark choices for the coupling parameters λ, λA and λF ,

It should be noted that in the decoupling limit, the specific values of these parameters
become less relevant to accessing the discovery potential of the heavy Higgs states, as these
coupling parameters mainly control the small electroweak corrections that split the heavy
(approximately degenerate) Higgs masses. Of course, they are more relevant once cβ−α

deviates significantly from zero.
If one is emboldened to scan over three parameters, then it is convenient to swap λ and

m2
H using eq. (18). In this case, one would scan over possible values of mH , cβ−α and tanβ

and choose benchmark values for λA and λF .

4 Significance of the coupling parameters λ, λ̂, λA and λF

To appreciate the significance of the combination of Higgs self-couplings defined in eqs. (1)–
(4), we note that starting from any Higgs scalar potential, one can always define two new
linear combinations of Higgs doublet fields,
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It follows that 〈H0
1 〉 = v/

√
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2 〉 = 0. This is the Higgs basis, which is uniquely defined
up to an overall rephasing, H2 → eiχH2. In the Higgs basis, the scalar potential is given by:
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,

where Y1, Y2 and Z1, . . . , Z4 are real and uniquely defined, whereas Y3, Z5, Z6 and Z7 are
complex and transform under the rephasing of H2,

[Y3, Z6, Z7] → e−iχ[Y3, Z6, Z7] and Z5 → e−2iχZ5 .

In the CP-conserving 2HDM, it is always possible to choose χ such that all potentially
complex parameters, Y3, Z5, Z6 and Z7 are simultaneously real.5

5In this case, the Higgs basis is unique up to an overall sign change, H2 → −H2, which would change the
signs of Y3, Z6 and Z7 while leaving all other squared-masses and self-couplings unchanged.
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One can then show that [see Ref. 3]:

λ1 = Z1 , λ̂ = −Z6 , λA = Z1 − Z5 , λF = Z5 − Z4 . (24)

In particular, in the Higgs basis, the CP-even Higgs mixing angle is α − β. Thus, we see
that the expressions of the physical Higgs masses given in eqs. (14)–(16) depend in a very
transparent way on the parameters of the Higgs basis.

Of course, the Higgs basis analysis also applies to the most general 2HDM (with no
additional discrete symmetries or CP imposed). For further details, see Ref. 4.

5 The MSSM Higgs sector

The MSSM Higgs sector employs a Type-II Higgs-fermion interactions. The above analysis
can also be applied to the MSSM Higgs sector which is a special case of the 2HDM analyzed
above. In particular, the Higgs self-coupling parameters satisfy

λ1 = λ2 = −λ345 =
1

4
(g2 + g′ 2) , λ4 = −1

2
g2 , λ5 = 0 ,

which implies that

λ = 1

4
(g2 + g′ 2) cos2 2β ,

λ̂ = 1

4
(g2 + g′ 2) sin 2β cos 2β ,

λA = 1

4
(g2 + g′ 2) cos 4β ,

λF = 1

2
g2 .

However, one must keep in mind that the formulae for Higgs masses in section 2 are tree-level
results. In the general 2HDM, this is not a real problem as the masses are all independent
parameters. However, in the MSSM one can obtain all tree-level Higgs masses and cβ−α given
mA and tan β as input. These tree-level relations suffer significant radiative corrections that
must be taken into account in any Higgs analysis.
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